

AA236C_20150601_FSW_Final_Report.docx p.1/32

Last modified: 2015-06-01 Last modified: 2015-06-01

AA 236C Flight Software Final Report

Andres Nötzli, Ashe Magalhaes, Grant McLaughlin, Osagie
Igbeare, Thomas Teisberg

AA236C_20150601_FSW_Final_Report.docx p.2/32

Last modified: 2015-06-01 Last modified: 2015-06-01

Table of Contents
Introduction
Background Information

Accounts and repositories
Protocols

Telemetry
Storing Telemetry
Telemetry types

Housekeeping
SCS configuration

Parameters (Mib/Housekeeping/Parameters)
Calibrations (Mib/Housekeeping/Calibrations)
Numeric Check (Mib/Housekeeping/NumericCheck)
SIDs (Mib/Housekeeping/Sids)

Telecommand
Ground Station Hardware

Completed Work
Communication

Telemetry
Flight Software
SCS configuration

Telecommand
Testing Infrastructure

Implementation
Usage
Implications for the flight software

INMS
Previous Work
INMS Scripting Overview

What are scripts?
Script Upload and Multiple Scripts
Implementation: Storing Scripts
Running a Script
Executing a Command

Outstanding Documentation Clarifications
Implementation Notes

Script Size
Suggested Approach

Anatomy of a Script File
Bugs Solved

AA236C_20150601_FSW_Final_Report.docx p.3/32

Last modified: 2015-06-01 Last modified: 2015-06-01

SD Card Open Error
Script Start Time Error

Code Development
INMS Simulator

INMS Script Size
Misc

SCS Update to Version v2.1
Cleanup/Style Guide

Further Development
Telemetry
Telecommands
INMS

TODOs in INMS.c
Decide on dynamic vs. static allocation for active script
Test task_ScriptTimer and task_ScriptHandler

Watchdog
Hardware support
Deployment sequence
Startup task
Callsign

Contributions of Team Members
Tips/Suggestions

Clearing the ground station data
If SCS does not receive any data from lithiumTNC

References
Appendix

QB50 Forum Post: INMS Script Maximum Size
QB50 Forum Post: Inconsistency in INMS flowchart (ICD Figure 15.6)
Microchip Technical Support | Stack Size Monitor
Microchip Technical Support | Stack and Heap Size Limitations

Equipment
Machines
Software

Contact Information

AA236C_20150601_FSW_Final_Report.docx p.4/32

Last modified: 2015-06-01 Last modified: 2015-06-01

Introduction
In this report, we discuss the progress on the QB50 project that we made in the Spring 2015
quarter. In addition, we describe the next steps needed to complete the project successfully.

Background Information
We discuss helpful background information.

Accounts and repositories

Primary Google Drive Contains resources from AA236B and AA236C 2014-15
https://drive.google.com/a/stanford.edu/folderview?id=0B6zwRToF1deLYXRaNj
NEa21rNm8&usp=sharing
(Editable by anyone with an @stanford.edu account.)

AA 236C Spring Flight Software Drive
From folder above, navigate to FSW > Spring

SSDL GitHub Organization
https://github.com/SSDL
Contact anyone on the team to add members

QB50 Flight Software Repository
https://github.com/SSDL/qb50_fsw_x

SCS configuration files
https://github.com/SSDL/scs-config/

lithiumTNC (software used for testing)
https://github.com/4tXJ7f/lithiumTNC

Protocols
We spent a major part of the quarter figuring out the protocols to use with SCS. Because the
existing documentation is rather poor, we give a brief overview here, pointing to the relevant
documents for further details.
The following diagrams give an overview of the protocols used at different points in the
communication chain.

AA236C_20150601_FSW_Final_Report.docx p.5/32

Last modified: 2015-06-01 Last modified: 2015-06-01

Telemetry
At a high level, a telemetry packet is structured as follows:

AX.25 CCSDS CCSDS AX.25

AX.25
Transfer
Frame
Header

Telemetry
Transfer
Frame
Secondary
Header

CCSDS
Packet
Header

Telemetry
Data Field
Header

Source Data Packet
Error
Control

Telemetry
Transfer
Frame Trailer

Frame-
Check
Sequence

128 bits 32 bits 48 bits 64 bits Up to 2048 bits 16 bits 8 bits 16 bits

The parts in blue are described in QB50-EPFL-SSC-SCS-ICD-AX.25-TFF, the parts in green in
QB50-EPFL-SSC-SCS-ICD-TMTC_PD. AX.25 is a standard protocol designed for use by
amateur radio operators. The use of AX.25 is a requirement of the QB50 project (QB50-SYS-
1.5.13). We only use a subset of the protocol: Only UI frames are being used and supported. It
is important to note that the primary AX.25 header and some of the AX.25 specific functionalities
like bit stuffing are implemented by the radio and the TNC. Theoretically, CCSDS packets do
not need to be “aligned” with AX.25 frames; a AX.25 frame can contain an arbitrary number of
CCSDS packets (even partial packets, if the CCSDS packet is very large). Another way to think
about it is that AX.25 transports a stream of information, so the segmentation at the AX.25 level
has no meaning nor impact on the protocols that it transports. This notion is somewhat
imprecise because the AX.25 header contains a First Header Pointer in the Secondary Header

AA236C_20150601_FSW_Final_Report.docx p.6/32

Last modified: 2015-06-01 Last modified: 2015-06-01

which specifies the start of the first CCSDS packet inside the AX.25 frame. For now, we decided
to always send one CCSDS packet in one AX.25 frame in order to keep the code simple, with
the option of implementing unaligned CCSDS packets if deemed necessary later in the
development process. We currently do not think that this will be necessary. As a result of this
decision, the current flight software always sends 0x00 as the First Header Pointer.
The flight software generates telemetry packets and sends them to the radio using the radio’s
Command and Data Interface (CDI) over UART. The CDI format is described in the Radio
Interface Manual provided by Astronautical Development. To send a message via the CDI, the
flight software has to add an 8 byte header containing the OpCode 0x1003 and a 2 byte
checksum footer.

Storing Telemetry
We will only be able to communicate with the satellite a few times per day for a couple of
minutes. The satellite has no mechanism to detect whether the ground station receives the
telemetry that it sends. Thus, it stores every piece of telemetry on one of two SD cards for later
retrieval. We reuse LMRST-Sat’s TAP structure to store packets on the SD card. A TAP is a
telemetry packet. The project defines a collection of TAP types with an associated TAP ID. Each
TAP type contains a fixed list of data (e.g. position data, temperature data, etc.). We made this
decision for two major reasons:

● We can reuse most of LMRST-Sat’s code for storing and retrieving telemetry to/from the
SD card

● The TAP sequence number is a nice way of referring to past telemetry and organizing it
on the SD card (the system keeps track of a sequence number for each TAP ID and
uses parts of the sequence number to determine the folder of the SD card to store the
TAP in)

When storing telemetry on the SD card, we store the CCSDS and TAP headers/footers along
with the actual data. The AX.25 frame is added only when sending the data over the radio. All
the AX.25 fields are generated on-the-fly. We added the option send_metadata to the TAP
structure TAPStruct_t, which is defined in TAP.c and stores metadata for each TAP ID. The
new option specifies whether the TAP header is sent over the radio for a given TAP ID or not.
The next section contains some additional information about the fields in the TAP header/footer.

Telemetry types
The type of telemetry is described by the Application Process ID (APID), Service Type and
Service Subtype. The CCSDS Packet Header contains the APID, while the Telemetry Data
Field Header contains the Service Type and the Service Subtype. The following telemetry types
are currently used:

- Telecommand verification (Service Type = 1)
- Housekeeping (APID = 10, Service Type = 3, Service Subtype = 25)
- INMS Data Management (APID = 14, Service Type = 128, Service Subtype = 1)

In the following, we provide some more details about the telemetry types.

AA236C_20150601_FSW_Final_Report.docx p.7/32

Last modified: 2015-06-01 Last modified: 2015-06-01

Housekeeping
When the satellite sends housekeeping telemetry, the first byte in the Source Data determines
the type of telemetry (SID). We implement two types of housekeeping telemetry:

- TAPs (0 < SID < 255)
- Whole Orbit Data (SID = 255)

The TAPs have the same structure as in LMRST-Sat:

Sequence number (4 bytes) Time (6 bytes) TAP Data Checksum (2 bytes)

Note: LMRST-Sat stores a TAP ID at the beginning of a TAP. We use the SID byte to store the
TAP ID (fortunately, they are at the same position, so using them interchangeably is easy).
The Whole Orbit Data is a packet required by the QB50 project (requirement QB50-SYS-1.4.1)
which provides basic health information about all satellites to the project.

SCS configuration
SCS uses an XML configuration file (Server/CoreDistribution/MIB/qb50-‐base.xml) to
describe the format of telemetry messages. In order to support a new telemetry packet, multiple
sections of the XML file need to be changed as described in the following sections.

Parameters (Mib/Housekeeping/Parameters)
Each <Parameter> tag corresponds to a value of a telemetry packet. The important attributes
are:

Number Unique ID (used later as a reference to this parameter)

Name The name that will be shown in the MissionData Client

Ptc (Parameter Type Code) and
Pfc (Parameter Format Code)

Stores the type and format of the parameter as described in ECSS--E--70--41A pp. 189

IsSpare If this is set to true, then the MissionData Client does not show the value

Description The MissionData Client shows the description when the user hovers the mouse cursor
over the value

Unit The MissionData Client shows the unit next to the value

Calibration ID of the calibration that turns the raw value into the actual value

Calibrations (Mib/Housekeeping/Calibrations)
There are multiple types of calibrations:

TextualCalibration Maps an integer range to a text. The Check attribute of the RangeText tags describes the
type of the value (Nominal, Warning or Danger)

PolynomialCalibration Turns an integer value into a floating point value using a polynomial. Optionally, the
NumericCheck attribute contains the ID of the check for the resulting values

AA236C_20150601_FSW_Final_Report.docx p.8/32

Last modified: 2015-06-01 Last modified: 2015-06-01

CheckOnlyCalibration Only does the check, no conversion

Numeric Check (Mib/Housekeeping/NumericCheck)
Every <NumericCheck> tag describes one check with the following attributes:

Id Unique ID used as a reference

Name Name of the check

DangerLow/DangerHigh Values below/above this threshold are considered to be dangerous

WarningLow/WarningHigh Values below/above this threshold are considered to be warnings

SIDs (Mib/Housekeeping/Sids)
Each <Sid> tag describes a telemetry packet with the following attributes:

Number The SID of the telemetry type

Apid The APID of the telemetry

IsRepeated Can there be multiple samples in a single packet? E.g. WOD requires this

TimeInterval Time interval between the samples

Name Name of the telemetry type

Description Description of the telemetry type

Parameters Space separated list of parameter IDs that describes the sequence of parameters in the
telemetry packet

Telecommand
Telecommands have a similar structure as telemetry but there are different fields. At a high
level, a telecommand is structured as follows:

AX.25 CCSDS CCSDS AX.25

AX.25 Transfer
Frame Header

Telecommand
Transfer Frame
Secondary
Header

CCSDS
Packet
Header

Telecommand
Data Field
Header

Source Data Packet
Error
Control

Frame-
Check
Sequence

128 bits 8 bits 48 bits 24 bits 16 bits 16 bits

Like the telemetry packets, the parts in blue are described in QB50-EPFL-SSC-SCS-ICD-
AX.25-TFF and the parts in green in QB50-EPFL-SSC-SCS-ICD-TMTC_PD.

AA236C_20150601_FSW_Final_Report.docx p.9/32

Last modified: 2015-06-01 Last modified: 2015-06-01

In order to support large telecommands (e.g. for uploading INMS scripts to the satellite), the
Telecommand Transfer Frame Secondary Header contains a Sequence Flag (2 bits) which
denotes the start, the continuation and the end of a segmented command. Note: This implies
that long commands are segmented at the AX.25 level.

Ground Station Hardware
The ground station sends and receives data using a Terminal Node Controller (TNC). The TNC
is responsible for converting an AX.25 message to an analog signal and vise versa. The ground
station uses the KISS protocol to communicate with the TNC over serial. KISS is a simple
standard protocol (http://en.wikipedia.org/wiki/KISS_%28TNC%29). A TNC typically supports
multiple operation modes, so it needs to be set to KISS mode.

Completed Work
We describe the work that we completed over the course of this quarter.

Communication
A lot of the work throughout the quarter was related to communication between the satellite and
the ground station in an effort to make the flight software compatible with SCS. This work had
two major components with different challenges: sending data from the satellite to the ground
station (telemetry) and sending data from the ground station to the satellite (telecommands). We
break down the work done for both directions.

Telemetry

Flight Software
LMRST-Sat was not using SCS for the ground station, so we had to change the flight software
to make it compatible with SCS. To do this, we implemented the AX.25.h/.c module which
implements functions to deal with the secondary headers of the AX.25 protocol. The AX.25
protocol is a requirement of the QB50 mission (QB50-‐SYS-‐1.5.13) and encapsulates CCSDS and
application data as outlined previously. More details on the protocol can be found in the
document “SCS Description and Interface Control”, Ref.: QB50-EPFL-SSC-SCS-ICD-D2501.
CCSDS communication is managed by the CCSDS.h/.c module, which handles packaging
telemetry packets with a CCSDS header and footer and parsing the CCSDS level of
telecommands. The packet includes fields for the application ID, service type, service subtype,
time, and data; this is detailed in QB50’s “Recommendation for Flight Software Implementation”
with a reference number of QB50-EPFL-SSC-SCS-ICD-FSW-1-0. We further configured the
FSW to QB50s standard by implementing a module (task_WOD.h/.c) for the whole orbit data.
Whole Orbit Data (WOD) is a set of housekeeping data collected over the whole orbit once a
minute. The parameters include satellite mode, battery voltage, battery current, bus currents,
temperature of COMM systems, EPS, and batteries and serve to identify the health status of the
CubeSat over the period of the mission. For those parameters that our satellite is not tracking
(temperature of COMM systems and EPS), we pass in a 0 as is outlined by QB50 in the
document Whole Orbit Data Packet Format (von Karman Institute for Fluid Dynamics

AA236C_20150601_FSW_Final_Report.docx p.10/32

Last modified: 2015-06-01

Aeronautics / Aerospace Department). The class sends WOD packets that contain 32 minutes
of data from the satellite to the ground station once every 30 seconds.

Grant’s edits

● Mention structural changes to the FSW to work around RAP
● Map telemetry through functions and modules

SCS configuration
We needed to change SCS to support new types of telemetry. Unfortunately, documentation
was rather sparse. The background information section contains the information that we pieced
together. Because the complete list of TAPs is currently not known, we limited ourselves to
configure the Bus TAP (TAP ID/SID = 3). Unfortunately, SCS spreads its configuration files
across multiple folders which makes upgrading to a new version and keeping the configuration
files under version control a pain. To improve the situation, we created the scs-config repository
that contains the SCS configuration files and we replaced the configuration files in the SCS
folders with hard links (https://msdn.microsoft.com/en-
us/library/windows/desktop/aa365006%28v=vs.85%29.aspx) to the files in the repository.

Telecommand
// @Grant: Describe your changes to support telecommands here

● Work around RAP
● Splice together commands or scripts and route them
● Removal of AX25 Secondary header
● Removal of CCSDS frame
● Existing echo functionality needs to be replaced with required echo protocol
● Map telecommands through functions and modules

Testing Infrastructure
In order to test the communication between the satellite and the ground station, we
implemented a tool called lithiumTNC that replaces the link between the ground station and the
satellite. An important design goal of lithiumTNC was to replace the link as seamlessly as
possible so that we can test the full software stack without any changes just for testing. To
achieve this, lithiumTNC simulates the satellite radio on one end and the terminal node
controller (TNC) of the ground station on the other end. The software communicates with both
parties through a serial port.

Implementation
In order to simulate the TNC and the radio, lithiumTNC implements two protocols: KISS for the
TNC and the CDI of the radio. Our software only supports data frames. The official manual of
the lithium radio1 specifies the CDI protocol. The CDI protocol allows the microcontroller to talk
to the radio. Our software supports the Transmit (0x1003) op code for sending data from the
satellite to the ground station.

1
http://www.astrodev.com/public_html2/downloads/firmware/Li1_Programming_Pack_R3pt10.zip

AA236C_20150601_FSW_Final_Report.docx p.11/32

Last modified: 2015-06-01

We implemented lithiumTNC in C and used the POSIX interface for serial communication. We
use CMake for the building the project. The serial interfaces are configured with hardware and
software flow control disabled and without parity bits. During the development, we accidentally
had software flow control enabled which lead to a hard-to-debug issue when a packet contained
one of the characters which were reserved for software flow control.

Usage
Because we use the POSIX interface for serial communication, the software requires a POSIX
compliant operating system. Our current setup uses Ubuntu running in a virtual machine on the
ground station using VMWare Player. We use com0com to create a pair of virtual serial ports for
the communication between SCS and lithiumTNC. We configured VMWare player to pass
control over one of the virtual serial ports and the serial port that connects to the satellite to
Ubuntu. While this solution proved to be somewhat finicky to set up, we found it to be stable
once running.
The following screenshot shows our current com0com configuration:

Implications for the flight software
Because lithiumTNC simulates the radio, the flight software does not need to implement
separate code paths for sending data over USB or the radio, improving test coverage. This is in
contrast to the LMRST-Sat code which had separate UART1_packetize/He1_packetize
functions. This allowed us to simplify and clean up the existing code.

INMS

Previous Work
Work on the INMS integration was started during AA 236B (Spring 14-15) by the CONOPS
team (Jan Kolmas and Thomas Teisberg). The final report from this team is available in the
Google Drive (as well on the SSDL servers). Last quarter’s work focused on building preliminary
understanding of the software requirements needed to upload and run scripts. Skeleton code for
executing scripts on Discovery was written last quarter. This code has been expanded upon and
implemented within the satellite codebase this quarter.

AA236C_20150601_FSW_Final_Report.docx p.12/32

Last modified: 2015-06-01

INMS Scripting Overview
The following section will outline the process for storing and running scripts on the satellite. This
process is documented in the INMS ICD and User Manual, however the documentation does
not provide a straight-forward step by step explanation of the control flow. We hope that this
report will help next year’s team get up to speed with less difficulty.

What are scripts?
The INMS, Discovery’s scientific payload, is commanded to turn on, turn off, collect data, and do
a few other housekeeping tasks through “scripts” that are written by the QB50 team, uploaded
to each satellite, and run at periodic intervals throughout the day. Each script is a binary file
containing one or more sequences of instructions and information about when to run each
instruction. It is the responsibility of the flight software to correctly manage the scheduling of
each command. Some of the commands must also be acted upon by the flight software while
others are simply passed to the INMS.

Script Upload and Multiple Scripts
Scripts will be provided to each QB50 team periodically throughout the mission to be uploaded
to the satellite. Teams will also be provided with a set of scripts prior to launch to pre-load. The
satellite must store up to 7 scripts. Each script is stored in a “slot.” When a team uploads a
script to their satellite, they must specify the “slot” in which to store the script. If a new script is
uploaded to a slot that is already full, the old script is deleted. This serves as the way to replace
and terminate scripts.

While there are 7 script slots (and thus 7 scripts may be stored at the same time), only one
script may be running at any given time. The script that will run is chosen based on “eligibility.” A
script becomes eligible when a UTC timestamp in the script headed is reached. When a script
becomes eligible, it starts running, stopping whatever script was previously running. Thus the
currently running script is always the script whose start timestamp was most recently reached.
In the event that the satellite restarts and no script is running, a script starts running only when
the next start timestamp is reached (i.e. the previously running script is not resumed).

Implementation: Storing Scripts
In the code written this quarter, when a script is received, the timestamp is extracted and the file
is saved to the SD card. The script slot and timestamp are then stored in an array in memory.
Because script files can be quite large (see discussion of script size below), it is important to not
store all 7 scripts in memory.

Within the INMS module of the code, there are two Salvo tasks that run simultaneously.
task_ScriptTimer is responsible to selecting the appropriate script to run. task_ScriptHandler
manages the execution of the selected script.

Running a Script
As mentioned above, only one script runs at a time. The anatomy of a script is as follows:

AA236C_20150601_FSW_Final_Report.docx p.13/32

Last modified: 2015-06-01

Script Header ● Size of script file
● UTC Start Time
● Additional script metadata

Times Table ● 4 byte entries containing an HH:MM:SS daily start time and a
reference to the script sequence to run

● Last entry has a script sequence reference of EOT (0x55, end of
table)

Script Sequences ● Up to 5 script sequences (S1-S5), each containing commands
and delays after running each command

● S1 is reserved for once-a-day setup tasks
● Scripts sequences can be of variable length

Checksum ● Fletcher-16 checksum of the entire script

Once a script has been selected to run, the times table must be read to determine which script
sequence to execute. The times table is a daily table of when to run each set of commands
(script sequence). A times table might say, for example, “run S1 at 8 AM, run S2 at 3 PM, and
run S3 at 9 PM.” When the bottom of a times table is reached (in this case, after running S3 at 9
PM), the script execution continues from the top again (thus S1 would be run the next day at 8
AM). This continues until the script is no longer running.

AA236C_20150601_FSW_Final_Report.docx p.14/32

Last modified: 2015-06-01

Within each script sequence, there are a set of time command pairs. For each pair, the
command is run and then there is a delay2 for the length of the specified time. For example, a
pair might indicate to run the OBC_SU_ON command and then wait 2 minutes. This delay is
intended to allow the execution of the command to finish before proceeding to the next step.
There is no checksum or other means of verifying that individual commands sent to the INMS

2 There is a small inconsistency in the INMS ICD regarding the order of this delay (before or after the
command). Our interpretation is that the delay comes after the command. See the Appendix for more
details.

AA236C_20150601_FSW_Final_Report.docx p.15/32

Last modified: 2015-06-01

have been received properly. It is simply assumed that all commands are transmitted properly. If
the INMS does not provide the appropriate data in response, then an error sequence is initiated.

Executing a Command
There are two types of commands: on board computer commands (OBC_) and science unit
commands (SU_). OBC_ commands require some direct action on the part of the flight
software. OBC_ commands are simply passed along (over serial) to the INMS. Each command
type is detailed in the table below from the INMS ICD:

After the command is executed, no other commands should be executed until the delay time is
elapsed. After each command execution, the software must also check if the current script has
been preempted (i.e. if another script is supposed to start executing now). If this is the case, the
script execution is immediately stopped, and the satellite begins executing the new script.

Outstanding Documentation Clarifications
Two aspects of the INMS documentation required clarification. We posted questions in the
INMS section of the QB50 forums under the username “thomasteisberg”. As of the time we
submitted this report, there have been no replies. See the Appendix for a full listing of the forum
posts and the References section for information on joining the forum.

AA236C_20150601_FSW_Final_Report.docx p.16/32

Last modified: 2015-06-01

Implementation Notes
All of the functionality described above is preliminarily implemented in the flight software. See
the Code Development below for more information.

Script Size
One major issue identified is that there is no reasonable maximum script size defined to the best
of our knowledge (see Appendix for a forum post clarifying this). The script header reserves two
bytes to store the size of the script (in bytes). This implies an absolute maximum script size of
64 kb.

2!"

1024
= 64 𝑘𝑏𝑦𝑡𝑒𝑠

Unfortunately, this is too large to be stored in memory on the satellite. We assume, however,
that there is no intention to actually produce script files that large. The largest example script we
are aware of is 206 bytes.

In addition, it would be preferable to avoid dynamically allocating any memory in flight to prevent
memory-related bugs which are difficult to test for and can easily cause a system crash.
Because there is no limit to the number of commands in each script sequence or the number of
times table entries, it is difficult to determine how to allocate memory to each of these parts,
even if an overall maximum was known (although there would, of course, be ways to work
around this by statically allocating a chunk of memory and manually managing it).

The size of a script (in binary form) can be determined as follows:

𝑠𝑐𝑟𝑖𝑝𝑡 𝑠𝑖𝑧𝑒 = 12 + 4𝑡 + 1 +
!

!!!

!!

!!!

4 + 𝑙!,!

𝑡 is the number of entries in the times table (not including the EOT entry)
𝑆 is the number of script sequences (maximum of 5)
𝐶! is the number of commands in script sequence 𝑗
𝑙!,! is the length in bytes of payload of command 𝑖 in script sequence 𝑗 (0 to 255 bytes)

Suggested Approach
It is not feasible to support scripts as large as 64 kb. As such, we suggest choosing a maximum
script size and simply ignoring scripts that are too large. We are still hoping to get some
clarification from the QB50 organizers (see Appendix), however, if we cannot get a more
restrictive maximum size, the following could be a reasonable approach for choosing a
maximum size and dimensions.

The maximum payload length of any specified command is 6, leaving a maximum command
length of 4 + 6 = 10 bytes. Assume that every script has 5 script sequences (the maximum
number) and that each has the same number of commands. This simplifies the script size to:

𝑠𝑐𝑟𝑖𝑝𝑡 𝑠𝑖𝑧𝑒 = 12 + 1 + 4𝑡 + 5 ⋅ 10 ⋅ 𝐶 = 13 + 4𝑡 + 1295𝐶

AA236C_20150601_FSW_Final_Report.docx p.17/32

Last modified: 2015-06-01

From here, reasonable values for 𝑡 (the number of times table entries) and 𝐶 (the number of
commands per script sequence) can be selected. For example, if 2kb of space is available,
𝑡 = 20times table entries and 𝐶 = 195commands per sequence could be chosen. Based on all
available information, this should accommodate all reasonable scripts.

In summary: If the QB50 team does not reply, we suggest making the assumptions outlined
above and choosing a maximum number of times table entries and commands per sequence.
20 times table entries and 195 commands/sequence is an entirely arbitrary but reasonable
choice.

Anatomy of a Script File
The following table shows an example script in both human-readable form and in hex. This is
intended to help future teams get up to speed with the format of the scripts.

Script Header
This section is fully described by Table 15-5 in the INMS ICD.

Script_LEN:
007D
Script_HDR:
AD5C07CF
AD5C07CF
2312

7D 00

AD 5C 07 CF
AD 5C 07 CF
23 12

Times Table
This section defines when each script sequence begins to run. The end of the times table is
defined by an EOT (end of table) symbol (0x55).

TimeTable:
00 05 00 S1
00 06 00 S2
00 07 00 S3
 EOT

00 05 00 41
00 06 00 42
00 07 00 43
55

Script Sequences
This section has each of the sets of commands that are referenced in the times table. The first
set of commands is S1. They increase in order (up to a maximum of S5). The end of a script
sequence is marked by an OBC_EOT command.

ScriptSequences:
S1:
00 02 OBC_SU_ON 01 01
00 02 SU_STIM 02 02 40
00 02 SU_DUMP 01 03
00 02 OBC_SU_OFF 01 04
00 04 OBC_EOT 01 05
S2:
00 02 OBC_SU_ON 01 06

02 00 F1 01 01
02 00 04 02 02 40
02 00 0B 01 03
02 00 F2 01 04
04 00 FE 01 05

02 00 F1 01 06

AA236C_20150601_FSW_Final_Report.docx p.18/32

Last modified: 2015-06-01

00 02 SU_STIM 02 07 15
00 02 SU_HVARM 01 08
00 20 SU_HVON 01 09
00 20 SU_SCI 06 10
C88E020005
00 02 SU_DUMP 01 11
00 02 OBC_SU_OFF 01 12
00 04 OBC_EOT 01 13
S3:
00 02 OBC_SU_ON 01 14
00 02 SU_STIM 02 15 04
00 02 SU_DUMP 01 16
00 02 OBC_SU_OFF 01 17
00 04 OBC_EOT 01 18

02 00 04 02 07 15
02 00 53 01 08
14 00 C9 01 09
14 00 08 06 0A C8 8E 02 00 05

02 00 0B 01 0B
02 00 F2 01 0C
04 00 FE 01 0D

02 00 F1 01 0E
02 00 04 02 0F 04
02 00 0B 01 10
02 00 F2 01 11
04 00 FE 01 12

Checksum
Fletcher-16 checksum as documented in the INMS ICD.

XSUM:
93
FF

93
FF

Bugs Solved
The following highlight specific bugs that were remedied at the onset of testing INMS
functionality.

SD Card Open Error

The function to open files on the SD card was improperly implemented. The first code snippet
above illustrates what existed in code before debugging. Strangely, this code still compiled
although the syntax of the fopen was missing an underscore. This implementation caused a
system wide reboot whenever we tried to read from the SD Card. In addition, the “rb” parameter
was unrecognized by the SD library, contrary to online documentation. The code snippet below
illustrates the changes to f_open function. These changes allowed the function to run properly.

AA236C_20150601_FSW_Final_Report.docx p.19/32

Last modified: 2015-06-01

Script Start Time Error

The scriptUTC function returns the overall start time of the script in UTC (the number of seconds
since the beginning of the respective epoch). Above, the function casts the 4 bytes as ints
before combining them into a 32 bit value.

However, because the PIC24 is a 16-bit mcu, the max number of bits it can handle in a single
operation is 16, unless the “long” cast is invoked. Because this operation involves 32 bits, each
byte is cast as a long and then combined into a 32 bit value, as seen below. The image below
the code snippet illustrates the start time of the 4 example scripts loaded onto the SD card.

Code Development
There are two main task functions in INMS.c, task_ScriptTimer and task_ScriptHandler.
task_ScriptTimer periodically checks to see if there is an upcoming script that needs to be run
(based on UTC time) and calculates a “wait time” before the next script can be run. Once the
wait time = 0, i.e. the script start time = the UTC time of the onboard mcu, task_ScriptTimer
triggers a flag causing task_Script Handler to properly handle the script.

task_ScriptTimer()

AA236C_20150601_FSW_Final_Report.docx p.20/32

Last modified: 2015-06-01

As shown above, we set a wait variable equal to the number of minutes before next recent script
should be run.

That wait variable is then passed to this WaitSemaphore that will update the current script
number and signal task_ScriptHandler to start.

task_ScriptHandler()

AA236C_20150601_FSW_Final_Report.docx p.21/32

Last modified: 2015-06-01

scriptHandler_image1

This is where task_ScriptHandler begins, index_script at this point has been updated from
task_ScriptTimer and the WaitSem is the signaler for task_ScriptHandler to begin.

scriptHandler_image2

Here, we load and parse the script.

scriptHandler_image3

We then loop through all the time tables. Each time table has it’s own start time, we wait until
the current time “time_get_time()” is equal to the start time of the next recent timetable
“next_tt_time”.

AA236C_20150601_FSW_Final_Report.docx p.22/32

Last modified: 2015-06-01

scriptHandler_image4

We loop through the commands of the timestable.
OBC_SU_ON - we turn on the 3.3V and 5V line of the INMS. In this case we pull the pins low as
they are connected the the gates of pMOS’s.

OBC_SU_OFF - we turn of both lines to the INMS.

OBC_SU_EOT - command sequence has ended.

AA236C_20150601_FSW_Final_Report.docx p.23/32

Last modified: 2015-06-01

scriptHandler_image5

If none of the above applies, the command is for the INMS. Here we pass the command header
to the INMS over csk uart 2 (which is uart 3 on the PIC 24) and then pass each of the command
parameters to the INMS.

scriptHandler_image6

AA236C_20150601_FSW_Final_Report.docx p.24/32

Last modified: 2015-06-01

If the INMS does not respond in 400 sec, there was an error. As per the requirements of
INMS_ICD pg. 50, we turn off the INMS, generate a 174 byte Error packet, wait 60 sec, then
turn the INMS back on. We also initialize the uart and the wait semaphores that we use. We
then set the “break_from_tt” flag to true - to be discussed below.

Break Flags

scriptHandler_image7

If task_scriptTimer finds a script that has is ready to run while we are in the midst of working
through a script - we break out of the current script, save our position in the current script, and
then process the new script that interrupted us. We process the new script from the start.

This functionality is achieved via the code snippets immediately above and below. When
task_scriptTimer finds a new script “index_script_loaded” (global variable) will be updated.
When update it will no longer equal “index_script” which will cause “break_from_script” to be
true. Since break from script is true, we break out of the script level while loop shown in
scriptHandler_image1.

scriptHandler_image8

scriptHandler_image9

If the INMS doesn’t respond in 400 sec. we break out of the entire time table and move to the
next most recent time table. This functionality is achieved via the break_from_tt flag, when set to
true, we break out of the loop (in scriptHandler_image3) and wait for the next most recent
timestable to begin.

INMS Simulator

QB50 provides both a script generator and an INMS emulator - these can be found in a folder
called INMS_Sim which is both on the “Legit IAR Workstation” and the ponse network. More
information on the generator and emulator can be found in the documentation titled “QB50-
INMS-MSSL-UM-13001_INMS_Simulator_User_Manual_Issue_2”. This document can be found

AA236C_20150601_FSW_Final_Report.docx p.25/32

Last modified: 2015-06-01

by entering the phrase between quotes into Google or by navigating to the INMS folder in the
Spring FSW Google Drive. File path is FSW - Spring - INMS.

INMS Script Size

Section 15.6 of the INMS ICD Section defines the first two bytes of the INMS script header as
containing the length (in bytes) of the script. Based on this, we assume there is a 64K absolute
maximum size of each script. Given the limited memory available on the PIC 24, it is strongly
suggested that future FSW teams implement a cap, less than 64K, on the max size of script we
can accept. See Suggested Approach under Outstanding Documentation Clarifications.

Misc

SCS Update to Version v2.1
During the quarter, the team behind SCS released a new version of SCS, which fixed a couple
of bugs. We followed QB50-EPFL-SSC-SCS-UM-D2503 pp. 20 to perform the upgrade.

Cleanup/Style Guide
In an effort to make the code of the flight software more accessible, we removed unused files
and defined a style guide to make the code more consistent. Unfortunately, not the whole code
base conforms to the style guide just yet but a large portion has been cleaned up. We published
the style guide on https://github.com/SSDL/qb50_fsw_x/wiki/Style-Guide.

Further Development
We describe the remaining tasks that we need to finish in order to fulfil the requirements of the
QB50 project.

Telemetry
While the infrastructure for telemetry is in place and seems to work quite well, we still need to
decide on the final list of TAPs, implement the final list of TAPs in the flight software as well as
configure SCS correspondingly and store telemetry to the SD card (the code for storing TAPs
on the SD card is currently not being used due to the other changes in mailman).

Telecommands
The final list of telecommands needs to be assembled and implemented. We have to make sure
that we have commands that cover the requirements (commands for the INMS, commands to
disable/reenable the radio).

INMS

TODOs in INMS.c
● Push ErrorPacket out to TAP
● Handle response from INMS (if necessary)
● Save the current state of the script
● Re-init the SEM_INMS_NEWSCRIPT semaphore

AA236C_20150601_FSW_Final_Report.docx p.26/32

Last modified: 2015-06-01

● In processAndStoreScript(): Send a TAP that slot number was bad
● In fillErrorPacket(): Write a function that takes a byte and puts it into Little Endian format

Decide on dynamic vs. static allocation for active script
● If using malloc, as we are now, then a stack monitor needs to be implemented
● If not using malloc, current code, needs to be adjusted such that scripts are saved in

static arrays
● Suggested option: Use only static allocation and create strict bounds on the maximum

size of scripts. See the “Script Size” section for details on this approach.

Test task_ScriptTimer and task_ScriptHandler
Neither of the functions have been tested. Currently, we can read the UTC start times from
script but the intended functionality of both tasks has yet to be tested and validated.

We focused more on development and pushed off testing. We strongly suggest that the next
team be mindful of regularly compiling and testing on the PIC24 hardware.

Watchdog
The requirement QB50-‐SYS-‐1.4.6 states that:

The OBSW shall protect itself against unintentional infinite loops, computational errors
and possible lock ups.

To fulfil this requirement, we have to port, adopt and test the code of LMRST-Sat’s watchdog.
To do this, we should adapt the code to SCS’s requirements and remove any functionality for
Vizion II. When testing, we must connect our code to the hardware in order to visually confirm
through the flashing of the LED that our software restart is accompanied with a hardware
response.

Hardware support
We need to integrate the driver code from the hardware team. We also need to add support for
the second SD card reader.

Deployment sequence
The deployment sequence needs to be implemented. Note: Before deploying deployables such
as the antenna and the solar panels, we have to wait 30min after ejection to be compliant with
the requirements (CDS-‐2.4.2,	 CDS-‐2.4.3).

Startup task
Similar to the LMRST-Sat flight software, we need a startup task that takes care of all the
initializations if the system gets rebooted. This task needs to be well tested and stable.

Callsign
The communications with Discovery will occur over amateur radio bands. At present, we are
planning to use the callsign of one of the team members (Thomas Teisberg, KK6TFS). This

AA236C_20150601_FSW_Final_Report.docx p.27/32

Last modified: 2015-06-01

would, however, require that he be present for every uplink to the radio. He is, however,
graduating in 2017 before the end of the mission lifetime. A preferable option would be to get
permission to use the W6YX club callsign, allowing any member of the club with permission to
communicate with the satellite. Thomas has sent an email to the club president and faculty
advisor.

Contributions of Team Members
We briefly describe who contributed to which parts of the project.

Andres Nötzli

● Telemetry (FSW + SCS configuration)
● lithiumTNC

Ashe Magalhaes

● Telemetry (FSW + SCS configuration)

Grant McLaughlin
Add contributions here

Osagie Igbeare

● INMS
● Microchip Stack Size Monitor
● Microchip Stack and Heap Size Limitations

Thomas Teisberg

● INMS Software
● QB50 Documentation Clarifications
● (Ongoing) Contacting W6YX about using their callsign

AA236C_20150601_FSW_Final_Report.docx p.28/32

Last modified: 2015-06-01

Tips/Suggestions

Clearing the ground station data

While testing, it can be helpful to clear the data stored on the ground station. The easiest way is
to execute the following command using the SQL Server Management Studio on the
MissionData database:

TRUNCATE	 TABLE	 HK_VALUES;

Consider making a backup of the database before executing this command as it is deleting
data.

If SCS does not receive any data from lithiumTNC
Try restarting the virtual machine and make sure to start SCS before lithiumTNC. If nothing else
helps, try to remove and add the pair of virtual COM ports in com0com.

References
Paride Testani
paride.testani@vki.ac.be
Paride can provide access to the QB50 forums. Create an account on the QB50 forums and
then email Paride. The process may take a week or so.

Appendix

QB50 Forum Post: INMS Script Maximum Size

AA236C_20150601_FSW_Final_Report.docx p.29/32

Last modified: 2015-06-01

Posted in Sensor Units -> INMS by thomasteisberg on 5/20/15.

The script header allocates two bytes for the script size, which presumably sets an INMS script
size limit of 64KB. I couldn't find a maximum size defined anywhere else.

Is there a defined maximum script size? 64KB is a big chunk of memory to deal with.

Thanks,
Thomas

No response as of June 1, 2015.

QB50 Forum Post: Inconsistency in INMS flowchart (ICD Figure 15.6)

Posted in Sensor Units -> INMS by thomasteisberg on 5/27/15.

This is just a small thing that we wanted clarification on. In two places in the INMS ICD, it
specifies clearly that the delay time for each command in a script sequence should occur
AFTER the command is executed:

From the INMS ICD Section 15.8:
2-byte delay time field: deltaTIME: the length of time (in seconds)
to wait AFTER executing the CMD.

From the REQ INMS-I-128:
The sequences consist of a COMMAND, and a DELTA-TIME field. The
COMMAND is read and executed FIRST, then, a delay of DELTA-TIME
seconds is elapsed.

The flowchart in Figure 15.6 seems to indicate that the delay occurs BEFORE the command
is executed.

Is it safe to assume that the correct behavior is always to run a command and then wait?
Obviously this would only really affect the first and last commands, but we just want to make
sure we're implementing everything correctly.

Thanks!

No response as of June 1, 2015.

Microchip Technical Support | Stack Size Monitor

Hello Osagie Igbeare,

AA236C_20150601_FSW_Final_Report.docx p.30/32

Last modified: 2015-06-01

Microchip Engineering Support has added comments to support Ticket 292034.

Comments:
<<Do you know how we might be able to find the size of our stack at runtime? >>

There are several way of doing this.

One way is to set up a timer interrupt and periodically examine the value of the stack
pointer.
Or if you know a routine that is likely to be one of the routines called at the
deepest level where you would want to know the Stack usage/free stack, you can examine
the stack pointer.
Or you could put this in every routine, including interrupt service to examine the
stack usage in each routine.

The way you can examine the stack is by use of inline assembly to get the stack value,
and then compare with a running maximum, updating the maximum as necessary:

int16_t sp;
asm ("mov w15,%0\n\t" : "=r" (sp));

Also refer to the section "6.4 STACK" which talks about the Stack, SP_init, SPLIM and
the WREG15 (Stack Pointer)

The 16-bit devices dedicate register W15 for use as a software Stack Pointer.
The linker will allocate an appropriately sized section and initialize __SP_init
and__SPLIM_init so that the run-time startup code can properly initialize the stack.
The run time start up code is available in the “src\libpic30” folder of compiler
installation directory.

Here is the stack initialization method from the runtime start up code:
mov #__SP_init,w15 ; initialize w15
 mov #__SPLIM_init,w14
;; __SP_init = initial value of stack pointer
;; __SPLIM_init = initial value of stack limit register

You may also refer to the below thread which talks about the stack monitoring:
http://stackoverflow.com/questions/19760432/runtime-stack-monitoring-on-microchip-
pic32-and-dspic33e

Regards,

Anima

Microchip Technical Support | Stack and Heap Size Limitations

Hello Osagie Igbeare,

Microchip Engineering Support has added comments to support Ticket 292034.

AA236C_20150601_FSW_Final_Report.docx p.31/32

Last modified: 2015-06-01

Comments:

Hi Osagie,

We did get your voicemail about still being unable to set the heap/stack to more than
21,876 bytes. I did do a quick test to confirm that that is an issue and I was able to
reproduce the same problem, although the limit was different for me.

If I set the heap to 70565 then there was not enough room for the stack (compilation
failed) even though the requested stack size was only 32 bytes. There should be enough
room for that in this device.

When I set the heap to 10,000, dynamic memory (Heap + Stack) is limited to 30720
bytes. Any other values below 30720 for the heap will result in the stack occupying
the remainder of the 30720 bytes (For example: 30,000 for heap will result in 720 for
stack). This is using an example with no global variables. I assume we are hitting the
same limit except your project has globals that reduce the available dynamic memory.

I do not know where this limit is coming from as the device clearly has more available
memory. I will have to defer to Anima for an answer as she is the expert in this area.

If you would like to provide more details for Anima please provide them here in the
ticket.

Anima, can you please look into the dynamic memory limit that Osagie and I have
discribe above?

Thanks,
Tad

Equipment

Machines
● Station 5 in Durand 012-A
● Ground Station in Durand 012-A
● Private laptops of the group members

Software
● IDE: MPLAB X v2.30
● Compiler: XC16 v1.23
● Git client: Git, GitHub for Windows, GitHub for Mac
● Ground station: SCS
● VM software: VMWare Player 7
● COM I/O: HyperTerminal, Realterm
● Virtual COM ports: com0com

AA236C_20150601_FSW_Final_Report.docx p.32/32

Last modified: 2015-06-01

Contact Information
Andres Nötzli
noetzli@stanford.edu
(650) 228-3861

Ashe Magalhaes
amagalhaes@stanford.edu
(201) 566-8845
Undergrad ‘17

Grant McLaughlin
Add your favorite email and phone number here

Osagie Igbeare
intrig87@stanford.edu
(631) 335-7207
Coterm ‘15

Thomas Teisberg
teisberg@stanford.edu
(434) 322-0360
Undergrad ‘17

