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Abstract

The problem of automating the detection of online hate speech is made more critical

by the moral and legal consequences of its propagation in a social media network. This

research surveys the current landscape of online hate speech detection, deep learning

model architectures, embedding choices, and the inclusion of user behavior metrics, in

order to improve performance on detecting the hateful class in a Twitter dataset. We

find that Google’s pretrained BERT embeddings outperform the inclusion of user be-

havior metrics across many model choices and that a single-layer multiple input Con-

volutional Neural Network with many filters performs best. The contribution of this

paper is a range of experiments that inform machine learning researchers on promising

future paths and policymakers on the capabilities and limitations of automated systems

on the task of detecting hate speech.

Keywords: Hate Speech Detection, Deep Learning, Natural Language Processing,

Twitter
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Chapter 1

Introduction

1.1 Motivation

In recent years social media companies like Facebook, Twitter, and Alphabet Inc.’s

YouTube have been widely criticized for failing to detect and remove hate speech from

their platforms [1]. Terrorist groups like al-Qaeda, ISIS, the Taliban, and Boko Haram

have repeatedly been unhindered in their releasing of hateful content, used for the pur-

poses of recruiting and radicalizing followers [2]. In March 2019, a white supremacist

posted racist manifestos–which spread through Twitter–and live-streamed the shooting

of over 51 people on Facebook and YouTube. While both companies leverage machine

learning algorithms to automatically detect and remove such content, they failed to

take down the content quickly enough. Facebook’s head of public policy defended the

platform’s slow response time:

“The video was a new type that our machine learning system hadn’t seen
before. It was a first person shooter with a GoPro on his head...This is
unfortunately an adversarial space. Those sharing the video were deliber-
ately splicing and cutting it and using filters to subvert automation. There
is still progress to be made with machine learning [3].”

Progress needs to be made sooner rather than later. Hateful content on social me-

dia contributes to real-world violence [4], recruitment to and propaganda for terrorist

individuals/groups [5], makes other users feel less safe and secure on social platforms

[6], and triggers increased levels of toxicity in the network [7].

Machine learning is a powerful tool for natural language processing (NLP) tasks

such as hate speech detection. Statistical learning methods learn weights for human-

designed representations of feature data. In contrast, deep learning, a subfield of ML,

1



Chapter 1. Introduction 2

shifts the burden of time-intensive feature design from linguistic experts to the learning

system. Supervised deep learning methods have achieved high levels of performance

in NLP tasks such as sentiment analysis, language generation, and information re-

trieval [8]. For the hate speech detection task, we have a corpus of posts, tweets, or

videos labeled as hate speech or not, with automated systems learning the nuanced

interpretation required to quickly detect hateful content at scale.

Governments are enforcing the need to find reasonable solutions, fast. The Sri

Lanken government temporarily banned social media networks three separate times

in the wake of the Easter 2019 suicide bombings that killed hundreds of people, in

order to prevent “social unrest via hate messages” [9]. Germany and the UK have

strict legislation against hate speech [10]. French leader Emmanuel Macron has made

fighting online hate speech a priority, taking meetings with Mark Zuckerberg and other

high-level Facebook representatives; as a result Facebook has agreed to hand over data

on French users suspected of spewing hate speech online. This is an international

first, and according to a counsel at law firm Linklaters, “a strong signal in terms of

regulation” [11]. EU countries have threatened to fine social networks up to 50 million

euro per year if they continue to fail to act fast enough [12].

This paper aims to navigate the challenge of creating systems that distinguish hate-

ful content from abusive, normal, and spam content when there are very few hateful

samples to learn from. There are 500 million tweets produced daily [13], and the vast

majority of those tweets are not considered hate speech [14]. We echo the concerns of

Facebook’s head of public policy by asking:

How can we improve the performance of automated systems on identifying
hate speech when they must learn from very few hateful samples?

Of particular relevance to this paper is modeling user behavior on Twitter. User

timelines and user interactions provide information on each user’s surrounding com-

munity and offer a more detailed picture of identifying ‘hateful users’, or those who

are prone to disseminating hateful content. Hateful users have been shown to tweet

more often and favorite more tweets than ‘normal‘ users [15]. The median hateful user

tends to have higher network centrality than normal users according to metrics like be-

tweeness and out-degree. Augmenting inputs to deep learning classifiers with metrics

of user behavior could help moderation teams quickly identify hateful content through

profiles.

Social media has contributed to a more open and connected world [16]. It has pro-

moted Western liberal values through its effects on protest mobilization [17], commu-
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nity building [18], and accountability in governments and institutions [19]. It is critical

that we do not lose the benefits of these platforms as they operate under increased reg-

ulation and scrutiny. So, while automated systems can and should enforce uniform

policies for user behavior that fosters welcoming online environments, this should not

come at the cost of dissenting and fringe views. This research surveys the capabilities

and limitations of state-of-the-art (SOTA) deep learning classifiers. We aim to inform

policy and decision makers, who must reconcile the benefits of social media platforms

with the harms they threaten when hate speech is allowed to propagate.

1.2 Outline

We begin by exploring the history of online hate speech as well as the challenges of

collecting and annotating a hate speech dataset from social media platforms. We then

describe related research and the model architectures which have shaped the current

landscape of automated hate speech detection. We explain how this research informs

our methodology and go on to describe our data, how it is collected and processed, the

details of our model architectures, and metrics for evaluation. We hypothesize that
the inclusion of user behavior features in feature embeddings to deep learning
model architectures will improve performance of the hate speech detection task.
Finally, we interpret the results from both a technical and policy perspective in order

to a) enumerate and qualify the contributions of our experiments in relation to the

existing technical body of related research and b) advise policymakers on how such

results may be acted on. We find that pairing sophisticated pretrained embeddings

with user behavior metrics in a multiple input CNN architecture achieves competitive

performance given the scarcity of hateful samples, but does not perform at a level

acceptable for complete automation of the task.

While this paper describes technical experiments, its intention is to offer an acces-

sible discussion on this topic to readers from all disciplines. A glossary is offered in

Appendix B to define technical jargon. The hope is that computer scientists, linguists,

policymakers, lawyers, and others can form interdisciplinary coalitions that are better

equipped to tackle the complex and important task of hate speech detection.

Results from this research are compiled in a workshop paper, targeted at Fall 2019

conference submissions. See Appendix C for the full draft.



Chapter 2

Background

2.1 History of Automating Hate Speech Detection

Early work on online hate speech detection focused on the necessity of preserving

free speech despite hate speech [20, 21]. The question of whether online forms of

expression translate into negative offline actions has been hotly contested. Stormfront,

considered the first “hate website”, was launched in 1995 by a Ku Klux Klan leader as a

forum for discussing ideas related to white separatism and white nationalism. Members

of the site claimed to be covered under their American First Amendment rights for

expression, arguing that they did not act on the forum’s sentiment. A subsequent study

conducted in 2014 found users of the site indirectly responsible for “the murders of

nearly 100 people in the preceding five years” [22].

In 2014 the UN Human Rights Council observed the proliferation of hate speech

online with a focus on ethnicity, nationality, and religion [23]. Subsequent research

demonstrated that online hate speech incites real-world violence against refugees in

Germany [4] and that in online environments toxicity from one source is likely to fo-

ment both reciprocal and sympathetic toxicity from adjacent users [7]. Public crit-

icisms against Facebook, Twitter, and YouTube’s slow responses to combating the

spread of hate speech have impelled them to hire thousands of people to work on

the problem [24]. In the meantime, strict online policies against offensive language

or sentiment that falls short of hate speech has resulted in the rapid rise of new plat-

forms that cater to fringe online communities. The social network Gab was created as

an alternative to Twitter, welcoming users banned or suspended from other platforms.

Researchers have found that its posts contain hate words at a rate 2.4 times higher than

Twitter [25].

4



Chapter 2. Background 5

In spite of the growing phenomenon of hate speech, prior to 2016, NLP research

on hate speech was limited [6, 26]. Since then, statistical machine learning techniques

like logistic regression and naive Bayes classifiers have been applied to this area with

success; logistic regression in particular is widely considered a baseline model for

experiments today [26, 27, 28]. Recently, the aforementioned pressures, coupled with

concurrent advances in NLP and deep learning, has sparked a resurgence in interest in

the field. The success of deep neural networks on NLP tasks like sentiment analysis

[29], named entity recognition [30], and part-of-speech tagging [31] have made it a

natural choice to apply to the task of classifying tweets or posts as hateful.

2.2 Hate Speech Datasets

It is a nontrivial task to create datasets for training machine learning classifiers on hate

speech detection. The common practice is to deploy a collection of tweets or posts to a

crowdsourcing site, where a number of human annotators identify an appropriate clas-

sification (i.e. hateful, normal, abusive, spam). This is problematic for a few reasons

and highlights the ways in which human-annotated data reflects social biases. First, the

subjective nature of identifying hate speech makes it difficult to extract ground truth

labels for tweets or posts [14]. There are many definitions of hate speech, which vary

across different languages, cultures, and governments. Many of the definitions involve

the hateful targeting of members of a group, like this one:

“Language used to express hatred towards a targeted individual or group,
or is intended to be derogatory, to humiliate, or to insult the members of
the group, on the basis of attributes such as race, religion, ethnic origin,
sexual orientation, disability, or gender.” [32]

Similarly, the UN’s definition is:

“The term hate speech is understood as any kind of communication in
speech, writing or behaviour, that attacks or uses pejorative or discrim-
inatory language with reference to a person or a group on the basis of
who they are, in other words, based on their religion, ethnicity, nationality,
race, colour, descent, gender or other identity factor. This is often rooted
in, and generates intolerance and hatred and, in certain contexts, can be
demeaning and divisive.” [33]

Second, because there is no universally agreed upon definition of hate speech [18],

it is often difficult for human annotators to separate hate speech from offensive lan-

guage. Given the legal consequences of hate speech, it is important that annotators and
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machine learning classifiers distinguish between hateful language and offensive lan-

guage [14, 32]. It has been found that showing users a definition of hate speech does

not improve annotation reliability, hinting that the presence of hate speech is not a bi-

nary decision and annotators likely need more context [28], such as sample post-label

pairings.

Third, it is likely that annotators skim through tweets or posts too quickly and fail

to pick up on the context of the language. Past research demonstrates that annotators

will incorrectly label normal text as hate speech if it contains hate or curse words [32].

Annotators are likely to miss out on hate speech without a slur as well as interpret

racist and homophobic slurs as hateful but sexist slurs as ‘just offensive’ [26, 32].

Creating robust hate speech datasets remains an active area of research with per-

sistent challenges. While this research focuses on the implementation of deep learning

model architectures, it is clear that progress made in reconciling the social biases in

the collection of labeled hate speech data will reduce algorithmic bias.

2.3 State of the Art Approaches

The application of deep neural networks to the task of hate speech detection is fairly

recent. While we define SOTA approaches as those specifically cited in the hate speech

detection literature, other advances in NLP (i.e. Open AI’s recent transformer language

model [34]) offer novel contributions to the task. We categorize implementations based

on how data is processed, model architecture choices, and the feature embedding types

used to convert text into inputs suitable for machine learning. Of particular relevance

to this work is research that identifies hateful or abusive language on Twitter.

2.3.1 Data Processing

Hate speech detection research focuses less on data “cleaning” (i.e. removing stop

words, punctuation, capitalization, etc. from tweets or posts) than other natural lan-

guage tasks, likely because these language features capture more information than in

more formal text. For example, some users respond to platform restrictions on speech

by creating posts that replace letters with symbols (e.g. a$$) in order to convey their

otherwise ‘illegal’ message undetected [35]. A standard procedure is for researchers

to lowercase and tokenize tweets, as well as remove URLs. Researchers may also re-

move emojis, although keeping emojis will likely boost NLP-task performances [36].
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Another form of data processing is bootstrapping; this method identifies hateful user

accounts from annotated tweets and obtains all tweets from their timeline, labeling

them hateful as well, in order to increase the number of samples and better balance the

dataset in cases where its imbalanced [6].

2.3.2 Embedding Choices

A tweet or post must be made into a feature embedding in order to be fed to our model

as a vector of real numbers. An embedding is a representation of model inputs that cap-

tures some of the semantics of the input in a relatively low-dimensional space. Pooling

layers or trimming and padding of tweets [37] can be used to convert tweets into a fixed

length for standardized inputs to our neural networks. N-grams, at both the word-level

and character-level, are widely used for converting a sequence of text into a sequence

of embeddings [38, 39]. Character n-grams have been used for natural language pro-

cessing tasks such as authorship identification [40], native language identification [41]

and machine translation [42]. Word-level and character-level embeddings have been

concatenated and made into feature embedding with success, as demonstrated by [38].

Word2Vec and GloVe (see appendix) embeddings are staples of NLP research and can

be compared to randomly initialized embeddings as a baseline. While GloVe is said

to better account for global contextual information, in practice researchers have had

success with both, as they each vary in efficacy on different datasets. Word-based

frequency vectorization methods, such as term frequency-inverse document frequency

(TF-IDF), are also commonly used embedding choices and offer the advantage of be-

ing language agnostic [37]. Pretrained embeddings, in contrast, are dependent on the

language of the corpus they are trained on.

2.3.3 Model Architectures

The baseline machine learning model choice, which tends to perform well, is logistic

regression [32, 43]. Another baseline model, support vector machines (SVMs)–with

linear kernels–perform similarly to logistic regression in practice [44]. Linear models

tend not to capture the sparse features in document classification tasks, undermining

the detection of relations between words or symbols in sentences. CNNs and RNNs

(particularly LSTMs) have achieved SOTA performance due to their ability to capture

long-term dependencies in a sentence, tweet, or post through their ability to maintain

information in memory for a period of time [27, 37].
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2.3.4 Evaluation Metrics

Because of the scarcity of hateful content relative to benign content [14], it is critical

we evaluate models based on their classification of actual hateful or abusive language.

Otherwise, a model could achieve a high classification accuracy by labeling everything

as non-hateful, repeatedly failing our task. F-score, precision, and recall are commonly

used as evaluation metrics, because they better capture the class contributions in an

imbalanced dataset. Precision is the ratio of the number of tweets correctly classified

to a given class divided by the total number of tweets classified to that class; recall is

the ratio of tweets correctly classified to a given class divided by the number of tweets

belonging to that class. The f-score is the harmonic mean of both. We express them

below with true positive (TP) and false positive (FP) rate:

Precision =
T P

T P+FP
(2.1)

Recall =
T P

T P+FN
(2.2)

F1 =
2 ·Precision ·Recall
Precision+Recall

(2.3)

In our task, precision answers: of all the tweets labeled as hateful, how many were

actually hateful? Recall answers: of all the hateful tweets, how many did we label?

F-score is the weighted average of both precision and recall, providing a measure of if

a system can achieve high precision and recall.

Due to the difficulty in acquiring hate speech datasets and relatively small dataset

sizes, 10-fold cross validation is a widely used metric of system performance [27, 37].

This is because it allows the model to learn from more observations, as all observa-

tions are used for training and validation. Another interesting method is ensemble

classification, in which multiple classifiers predict the label of an input and the label

with majority consensus is chosen. If all classifiers disagree, the classifier with the

strongest confidence in a prediction is chosen [37].

2.4 Metrics of User Behavior

Hateful users tend to make themselves central to the Twitter social network: they tar-

get more popular users and they have more statuses and followees per day, although
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they have younger accounts [6, 15]. While this may increase the user’s visibility, the

inclusion of hateful or antagonistic content in a tweet reduces the rate of retweet by a

factor of 45 [45]. Despite this, hateful users are central to Twitter reply networks as

determined by features such as betweenness and eigenvector centrality [15]. Further-

more, the modeling of reply trees–rooted at a tweet and joined by replies–reveals that

the in-degree of the tweet, or the number of retweets, plays an important role in the

overall shape of the reply tree and a component of the Twitter reply network as a whole

[46].

Latent Dirichlet Allocation (LDA) [47] is a method of topic modeling that extracts

the main topics in text. It has been used to improve the performance of linear machine

learning classifiers on the task of identifying abusive social media content [48]. While

LDA-derived topics have been used as annotations [49], to the best of our knowledge

it has not been included in feature embeddings in order to improve the performance of

deep learning classifiers on the task.

2.5 Challenges

This section highlights relevant background and previous work to our task of hate

speech detection; it is also worth summarizing the challenges cited by other researchers

in order to inform our methodology. First, extensive data processing may remove

valuable information from social media content. Given the limited number of hate

speech datasets available, it is important to consider the social biases and fallacies that

are inherent to crowdsourced labels. Given the scarcity of hateful content relative to

benign content, evaluation metrics that account for imbalanced classes should be used.

Because of the legal and moral consequences of identifying a post or user as hateful, it

is critical that our classifier distinguish between hateful and abusive language. Finally,

the distinction between hateful content and hateful users is worth defining [15], as the

task of identifying hateful users is easier but not equivalent to the task of identifying

hateful content.
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Methodology

Objective. The overall goal of this research is to conduct a survey of deep learn-

ing model architectures, embedding choices, and feature inputs in order to automate

the identification of hateful tweets from a dataset with few hateful samples. Unlike

previous work, we experiment with user behavior metrics in multiple input model ar-

chitectures to provide our deep learning classifiers with more context to identify hate

speech with.

3.1 Data Collection

The dataset for this research comes from Founta et al.’s work that describes the process

of large scale crowdsourcing for annotations of hateful, normal, abusive, and spam

tweets [14]. Founta et al. provide status ids for others to obtain tweets through the

Twitter API. After learning that a number of tweets were no longer available on Twit-

ter, they provided 100k tweets’ status ids and their associated majority labels. Upon

using the Twitter API, we find that only 64% of those tweets are still available online;

we assume the remainder have been taken down by Twitter or the users. The class

distribution is as follows: 4% hateful, 20% abusive, 62% normal, and 14% spam;

there are 64,149 tweets total. Half the tweets achieved annotation majority with an

agreement of more than 3 out of 5 votes, which should give us a degree of confidence

in the annotations. Figure 3.1 illustrates a word cloud of each class.

The average retweet count of hateful content is 15% higher than the average retweet

count of normal content; the average favorite count of hateful content is 76% higher

than the average favorite count of normal content. Finally, on average hateful content

is a reply to existing tweets 31% more often than normal content is.

10
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Figure 3.1: Word clouds of tweets from the hateful, abusive, normal, and spam classes.

For each tweet, if it is in reply to a tweet we use Twitter’s API to collect the context

tweet. 19% of the total tweets are a reply. Of those, 14% are no longer available

on Twitter. For each tweet, we crawl the user timeline of the author and collect their

200 most recent tweets, giving us around 12.8 million additional tweets for LDA topic

modeling.

3.2 Data Processing

We clean the tweets by tokenizing, lowercasing, and removing punctuation. We keep

URLs because they provide important context; tweets with URLs are more likely to

get retweeted [50]. We experiment with three types of text embeddings:

1. TF-IDF embeddings. TF-IDF fits the training set into a weighted vector by

normalized frequency of the 10,000 most common words in our vocabulary. Our

validation and test set are transformed using the learned weights.

2. Pretrained Twitter embeddings. These embeddings are from a Word2Vec

model trained on 400 million raw English tweets, with an embedding dimen-

sion of 400 [51].

3. Pretrained BERT embeddings. Google’s BERT, or Bidirectional Encoder Rep-

resentations from Transforms, is a novel method of pre-training language repre-

sentations which obtains SOTA results on a range of NLP tasks described in [52].
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Instigator Tweet Annotated (Reply) Tweet

H
at

ef
ul Want some cheese with that whine? wow nice retort, putin lover. anything

minorities say = whine. kill all f*gs,

right?
A

bu
si

ve Bombshell report over the weekend

shows a ‘very high up‘ Obama official

unmasking Trump associates for polit-

ical pu https://t.co/UwNWfa27ea

You bunch of ass clowns are as bad

as the illegitimate Pres we got stuck

with. Leaders in bs news. #worstpre-

sever

N
or

m
al watching the Rays game in NY is frus-

trating AF. I have 2 listen 2 the an-

nouncers fave the Yankees & it goes

against everything I believe in

Whoa. Chill. I may have to put this

friendship on hold if you bad mouth

my Yankees

Sp
am

This great video from @ will make

you want to hit a bike trail. https:

//t.co/VvK0KAJh4T

Thanks for sharing @! Anyone in-

terested in a MTB road trip to NI,

plan your trip at https://t.co/

mKBUPSDWZc #RideNorth

Table 3.1: Sample tweet reply pairings for hateful, abusive, normal, and spam classes.

Specifically, we use the BERT-12-768-12 model with an embedding dimension

of 768.

For our word embeddings, we trim or pad each tweet to 17 words, the average size

of a tweet in our dataset. When padding, we add randomly generated embeddings so

that each tweet embedding is a n-gram, where n=17. To account for the imbalance

of classes in our dataset, for our training experiments we draw samples through a

multinomial distribution that accounts for each class weight. Our balanced batches

allow the classifier to learn class representations more consistently each epoch. We do

not do this for validation and testing because a) we run the risk of tweet samples that are

seen multiple times or never in our evaluation and b) it is not a realistic representation

of tweets in the wild. Table 3.1 displays a random sample of each of our categories of

tweets, with personally identifiable information removed.

https://t.co/UwNWfa27ea
https://t.co/VvK0KAJh4T
https://t.co/VvK0KAJh4T
https://t.co/mKBUPSDWZc
https://t.co/mKBUPSDWZc
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3.3 Environment Configurations

Each experiment type is run with three or more different seeds, and the mean and

standard deviation of results are reported. This adds robustness to our experiments

and higher confidence in our results. In order to ensure reproducibility, we set the

random number values and random number generators of our data providers, PyTorch

(deep learning platform) backends, and NumPy (scientific computing package) to our

experiment seed. This is so that computations are deterministic and replicable.

All experiments use the cross entropy loss function which takes in the classifier’s

prediction score for each class, applies a softmax layer, and measures its divergence

from the true label. For our deep learning experiments, we use the Adam optimizer, an

adaptive learning rate optimization algorithm designed for deep neural networks; for

our logistic regression experiment we use limited-memory BFGS, a popular optimizer

for linear machine learning models. Finally, we use a scheduled learning rate that relies

on a cosine annealing schedule to more quickly reach a learning rate that reduces noise

in our parameter updates [53].

3.4 Model Architectures

Logistic Regression Our baseline model is multi-class logistic regression which uses

the L2 norm penalty as a form of regularization. We do not expect it to perform well

on the hateful and abusive classes because this model assumes the data is linearly

separable.

Multilayer Perceptron. Known as a “vanilla neural network”, this model consists

of fully connected layers with the non-linear activation function leaky ReLu applied.

We use Leaky ReLus here and in other models because it allows a small, positive

gradient when the unit is not active and tends to perform better than nonleaky ReLu in

practice.

Convolutional Neural Network (CNN). While this model is traditionally used for

image inputs, it has performed quite well on NLP tasks and has had success when

applied to hate speech detection [38]. The convolutional layer computes the output of

neurons (i.e. mathematical operations) that are connected to local regions in the input.

It consists of a set of learnable filters that produce an activation map used to ultimately

compute the class scores. For a more thorough explanation of CNNs, see [53]. Our

CNN consists of a series of convolutional layers, batch normalization, leaky ReLu,
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and dropout. The output is processed through a max pooling layer and then a fully

connected layer which computes class probabilities. Our CNN contains a context list

that gives every layer access to all the previous layers, allowing for more connectivity

and greater chance of the network learning from long-term dependencies in the tweet.

DenseNet. CNNs are more accurate and efficient if they contain shorter connec-

tions between layers close to the input and output [54]. DenseNet leverages this obser-

vation by connecting every layer to every other layer: for each layer, the feature maps

of all preceding layers are used as inputs into all subsequent layers. Our DenseNet

implementation has achieved SOTA results for image datasets; we experiment with its

application to NLP.

LSTM. LSTMs (and RNNs more broadly) improve on traditional deep neural net-

works by propagating information in both directions. This loop in the architecture

acts as a memory state by which the network makes adjustments in the information

flow, allowing the model to selectively remember or forget. This model has performed

well on NLP tasks in practice because of its ability to remember dependencies and

between sentences; it is applied to the task of hate speech detection by [27] [44] [38].

Our implementation passes our input through a series of LSTM layers to a final fully

connected layer.
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Experiment Design

The experiments consist of three phases that demonstrate the effect of user behavior

metrics on a combination of models and embedding types. Each of our 4 model choices

are run with our 3 embedding types, for 4 rounds of experiments, with 3 different seeds,

for a total of 144+ experiments before tuning.

4.1 Phase 1: Tweet Embeddings

We compare our deep learning models to a baseline logistic regression model to begin

with an idea around how much of an improvement they can offer. Here the feature em-

bedding to our deep learning models are simply the tweet embeddings. Table 4.1 enu-

merates regularization choices, number of layers, and model-specific hyperparameter

values. Regularization reduces the number of parameters and amount of computation

in the network, which helps to control overfitting. The number of layers and hyperpa-

rameter choices are set with values that are commonly used in the literature and with

the expectation that tuning will be conducted down the line on the best performing

models.

4.2 Phase 2: Tweet + Reply Embeddings

The goal of this round of experiments is to apply some type of context to our embed-

dings.

15
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MODEL REGULARIZATION LAYERS

LR L2-NORM PENALTY -

MLP MP, λ=1E-4 3 FC-LERELU-FC

CNN MP, BN, δ=0.5, λ=1E-4 3 CONV-BN-LERELU-FC

DENSENET AP, BBN, δ=0.5, λ=1E-4 4 DENSE-BBN-RELU-CONV-FC

LSTM δ=0.5, λ=1E-4 3 LSTM-FC

Table 4.1: Baseline model architectures. Terms include Weight decay (λ), Max Pool-

ing (MP), Average Pooling (AP), Dropout (δ), Batch Normalization (BN), and Bottle-

neck Layer, which includes BN (BBN). Model-specific hyperparameters include CNN

filters=8, DENSENET growth-rate=12, LSTM hidden-layers=5.

4.2.1 Reply Pairings

First, because of the statistics collected around the behavior of hateful users and retweet-

ing, we define pairs of tweets: the original tweet and a context tweet. The context tweet

is for the case that the tweet was a response to something else. If the tweet is not a

response to something else, we add null embeddings to indicate that there is no context

for the tweet. Although only 19% of our tweets in the dataset are replies, the extra

information around context (when it is there and not there) may help our network learn

in some way. See Table 3.1 for an example of reply pairings.

4.2.2 Reply Network Metrics as Embedding Coefficients

Next, because tweet in-degree has been shown to be significant ([46], see Background)

we focus on in-degree in terms of number of times someone has retweeted a given

tweet and number of times someone has favorited a given tweet. Our maximum

retweet value is 154,565 and our maximum favorite value is 27,741. Because these

numbers are so large, we log each (and use 0 when the count is 0), so as to not skew the

learned weights. We concatenate the logged retweet and favorite counts to our tweet

and reply embeddings. We are interested to see if the network can better learn from

the retweet and favorite numbers as a measure of context.
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4.2.3 Multiple Input Model Architecture

Here and for the remaining experiments, we shift to building a neural network with

multiple inputs in order to have the network learn from the annotated tweet in addition

to other types of embeddings. We have the annotated tweet embedding and the con-

text tweet embedding as separate inputs; they are processed by different parts of the

model architecture. The learned features for each are concatenated and fed into a final

fully connected layer. See Figure 5.2 for a visualization of a multiple input network

architecture.

4.3 Phase 3: Tweet + User Topic Embeddings

This phase aims to add context in a more sophisticated way.

4.3.1 LDA Topic Modeling Embeddings

For each tweet in our dataset, we crawl the author’s user timeline and collect 200

tweets. We then conduct topic modeling through the LDA approach (discussed in

Background). We use LDA, as opposed to other topic modeling techniques, because

LDA represents documents (or tweets) as random mixtures over topics in the corpus,

which reflects what we expect from tweets on a user’s timeline [47]. For each of our

users, we find the dominant topic in their timeline tweets and create embeddings of

a sequence of the top 10 words related to the topic. We choose the same embedding

that is used to embed our tweets for a given experiment. We also concatenate the

coherence and perplexity scores of the user’s timeline to each embedded topic word

to add a global measure of topic modeling. Perplexity is a measure of how well a

probability model can predict a topic (lower is better) and coherence captures how

well topics can be defined (higher is better).

Our multiple input model architecture processes the topic embeddings and tweet

embeddings. Again, we concatenate the learned features and use this as input to the

final fully connected layer.

4.4 Hyperparameter Tuning & Evaluation

We tune our best performing models–by model type and embedding type–by exper-

imenting with learning rate, regularization, number of layers, and the model specific
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parameter. We define best performing model as the model with the greatest validation

set f-score on the hateful classes. We evaluate our results by overall metrics of f-score,

precision, and recall as well as f-score of the hateful and abusive classes. This is be-

cause we are concerned with our classifier’s ability to correctly identify hateful and

abusive samples. To achieve stability in the results, we evaluate the mean and standard

deviation of 3 experiments each.

4.5 Limitations

In order to keep our research in the scope of our central questions, we choose exper-

iments that demonstrate the effect of user behavior in feature embeddings on model

performance. We acknowledge that there are alternative paths within our methodology

that may result in higher performance and are worth exploring in future work. We

list a few here. First, we choose to trim or pad tweets instead of processing tweets in

batch sizes by tweet length or applying a pooling layer. Second, we do not experiment

with character embeddings. Third, we do not add attention to our LSTM architec-

ture despite its SOTA performance in other related NLP tasks. Instead, we depend on

our experiments with feature embeddings to add a form of attention. Fourth, we do

not conduct cross-validation or ensemble classification, even though it may augment

training, because of time considerations. Finally, we collect only 200 tweets from user

timelines instead of their full timelines due to rate-limiting restrictions. This research

would benefit from collecting all tweets in the timeline in addition to crawling the

timelines of all followers of all users in our dataset.

Additionally, aside from rate-limiting, we are limited by the data returned by Twit-

ter’s API. The reply tree study conducted by [46] in 2016 is no longer easily replicable,

as Twitter only provides a subset of data. For example, when trying to collect replies

from a tweet with 78 replies, only 15 were available through the API. According to

Twitter:

Please note that Twitter’s search service and, by extension, the Search API
is not meant to be an exhaustive source of Tweets. Not all Tweets will be
indexed or made available via the search interface.
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Results

5.1 Phase 1 Results

Table 5.1 illustrates Phase 1 results across our evaluation metrics. Logistic regression

performs surprisingly well, which is in line with the results from [38]. The BERT em-

beddings perform the best across all models, with CNN-BERT being the best perform-

ing combination for both f-score on the hateful class and f-score overall. The MLP

does not perform well at all. We hypothesize that this is because of the scarcity of

hateful tweets in addition to the fact that our feature embeddings only consist of tweet

embedddings; as a result the MLP and LSTM models do not have enough signals or

cues to interpret the input. In contrast, we hypothesize that the CNN and DenseNet

models perform well because, similar to how they handle images, they are interpreting

patterns from an otherwise noisy input.

5.2 Phase 2 Results

Table 5.2 illustrates Phase 2 results across our evaluation metrics. While different

model-embedding combinations see different performance boosts/losses from this round

of experiments, we achieve our highest score with the CNN-BERT with network met-

rics as embedding coefficients, but only by a slight margin. We see the most benefit

to TF-IDF embeddings for CNN and DenseNet, where the overall f-score is improved

with both types of reply metrics. For pretrained Twitter and BERT embeddings, using

reply metrics as embedding coefficients by passing the context tweets through a tweet-

level version of our model did not help the final model in learning. MLP and LSTM

were likely not affected much because similar to our hypothesis from our baselines,

19
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Table 5.1: Phase 1 Experiment Results

MODEL FH FA F P R

LR-TFIDF 0.13 ± 0.05 0.28 ± 0.12 0.52 ± 0.05 0.53 ± 0.07 0.57 ± 0.06

LR-TWIT 0.15 ± 0.01 0.63 ± 0.0 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.01

LR-BERT 0.2 ± 0.0 0.74 ± 0.0 0.71 ± 0.0 0.71 ± 0.0 0.72 ± 0.0

MLP-TFIDF 0.0 ± 0.0 0.22 ± 0.16 0.05 ± 0.02 0.03 ± 0.01 0.18 ± 0.03

MLP-TWIT 0.08 ± 0.04 0.42 ± 0.01 0.32 ± 0.13 0.57 ± 0.03 0.32 ± 0.07

MLP-BERT 0.05 ± 0.04 0.24 ± 0.16 0.19 ± 0.18 0.33 ± 0.22 0.23 ± 0.16

CNN-TFIDF 0.1 ± 0.01 0.22 ± 0.09 0.38 ± 0.06 0.49 ± 0.06 0.33 ± 0.06

CNN-TWIT 0.27 ± 0.04 0.78 ± 0.02 0.68 ± 0.01 0.75 ± 0.01 0.65 ± 0.01

CNN-BERT 0.29 ± 0.03 0.75 ± 0.02 0.71 ± 0.03 0.76 ± 0.02 0.69 ± 0.03

LSTM-TFIDF 0.18 ± 0.01 0.62 ± 0.06 0.52 ± 0.03 0.67 ± 0.02 0.49 ± 0.03

LSTM-TWIT 0.22 ± 0.01 0.67 ± 0.02 0.62 ± 0.02 0.72 ± 0.01 0.58 ± 0.02

LSTM-BERT 0.25 ± 0.02 0.74 ± 0.01 0.67 ± 0.01 0.76 ± 0.0 0.64 ± 0.01

DENSE-TFIDF 0.08 ± 0.0 0.14 ± 0.1 0.27 ± 0.19 0.29 ± 0.21 0.26 ± 0.15

DENSE-TWIT 0.22 ± 0.01 0.74 ± 0.01 0.67 ± 0.01 0.7 ± 0.0 0.66 ± 0.01

DENSE-BERT 0.26 ± 0.01 0.73 ± 0.0 0.68 ± 0.01 0.72 ± 0.0 0.67 ± 0.01

F is f1 score, FH indicates hateful class, and FA indicates abusive class. P is precision

and R is recall. The red highlight indicates best performing model and the blue highlight

indicates the TF-IDF embeddings that see the most improvement with the inclusion of

user behavior metrics.
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Table 5.2: Phase 2: Reply Pairings (Top) & Network Metrics (Bottom) Experiment Re-

sults

MODEL FH FA F P R

MLP-TFIDF 0.06 ± 0.04 0.11 ± 0.16 0.03 ± 0.03 0.02 ± 0.02 0.1 ± 0.07

MLP-TWIT 0.12 ± 0.01 0.36 ± 0.06 0.26 ± 0.14 0.44 ± 0.2 0.28 ± 0.09

MLP-BERT 0.07 ± 0.02 0.38 ± 0.01 0.4 ± 0.0 0.52 ± 0.02 0.38 ± 0.02

CNN-TFIDF 0.06 ± 0.04 0.23 ± 0.08 0.26 ± 0.14 0.38 ± 0.1 0.28 ± 0.05

CNN-TWIT 0.25 ± 0.01 0.77 ± 0.03 0.66 ± 0.03 0.75 ± 0.01 0.64 ± 0.03

CNN-BERT 0.29 ± 0.01 0.76 ± 0.02 0.7 ± 0.02 0.75 ± 0.01 0.68 ± 0.01

LSTM-TFIDF 0.19 ± 0.0 0.69 ± 0.0 0.56 ± 0.0 0.7 ± 0.0 0.53 ± 0.0

LSTM-TWIT 0.13 ± 0.0 0.41 ± 0.0 0.5 ± 0.0 0.61 ± 0.0 0.46 ± 0.0

LSTM-BERT 0.22 ± 0.0 0.7 ± 0.0 0.65 ± 0.0 0.74 ± 0.0 0.61 ± 0.0

DENSE-TFIDF 0.11 ± 0.01 0.3 ± 0.16 0.48 ± 0.07 0.5 ± 0.06 0.48 ± 0.07

DENSE-TWIT 0.09 ± 0.01 0.31 ± 0.07 0.46 ± 0.03 0.55 ± 0.02 0.43 ± 0.04

DENSE-BERT 0.19 ± 0.01 0.69 ± 0.03 0.64 ± 0.02 0.7 ± 0.0 0.62 ± 0.02

MLP-TFIDF 0.0 ± 0.0 0.22 ± 0.16 0.2 ± 0.19 0.15 ± 0.16 0.34 ± 0.19

MLP-TWIT 0.06 ± 0.02 0.37 ± 0.02 0.14 ± 0.02 0.38 ± 0.21 0.23 ± 0.01

MLP-BERT 0.05 ± 0.0 0.35 ± 0.01 0.13 ± 0.03 0.29 ± 0.23 0.21 ± 0.02

CNN-TFIDF 0.1 ± 0.01 0.25 ± 0.07 0.41 ± 0.08 0.5 ± 0.05 0.39 ± 0.12

CNN-TWIT 0.26 ± 0.03 0.77 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.63 ± 0.01

CNN-BERT 0.3 ± 0.01 0.76 ± 0.0 0.69 ± 0.01 0.76 ± 0.0 0.67 ± 0.01

LSTM-TFIDF 0.17 ± 0.01 0.64 ± 0.04 0.52 ± 0.03 0.67 ± 0.02 0.49 ± 0.03

LSTM-TWIT 0.21 ± 0.01 0.65 ± 0.04 0.6 ± 0.03 0.71 ± 0.02 0.56 ± 0.02

LSTM-BERT 0.25 ± 0.0 0.73 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.63 ± 0.01

DENSE-TFIDF 0.07 ± 0.02 0.29 ± 0.05 0.49 ± 0.06 0.53 ± 0.07 0.5 ± 0.1

DENSE-TWIT 0.22 ± 0.02 0.75 ± 0.01 0.67 ± 0.0 0.71 ± 0.02 0.65 ± 0.0

DENSE-BERT 0.25 ± 0.0 0.73 ± 0.01 0.68 ± 0.0 0.71 ± 0.0 0.67 ± 0.01

F is f1 score, FH indicates hateful class, and FA indicates abusive class. P is precision

and R is recall. The red highlight indicates best performing model and the blue highlight

indicates the TF-IDF embeddings that see the most improvement with the inclusion of

user behavior metrics.
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Table 5.3: Phase 3: User Behavior Metrics Experiment Results

MODEL FH FA F P R

MLP-TFIDF 0.14 ± 0.02 0.47 ± 0.02 0.39 ± 0.04 0.58 ± 0.01 0.39 ± 0.03

MLP-TWIT 0.08 ± 0.04 0.36 ± 0.1 0.31 ± 0.16 0.41 ± 0.24 0.32 ± 0.11

MLP-BERT 0.06 ± 0.01 0.39 ± 0.02 0.35 ± 0.09 0.53 ± 0.03 0.34 ± 0.07

CNN-TFIDF 0.24 ± 0.01 0.82 ± 0.01 0.64 ± 0.02 0.77 ± 0.01 0.61 ± 0.02

CNN-TWIT 0.19 ± 0.07 0.71 ± 0.08 0.62 ± 0.06 0.71 ± 0.04 0.61 ± 0.05

CNN-BERT 0.3 ± 0.02 0.76 ± 0.01 0.68 ± 0.03 0.76 ± 0.01 0.65 ± 0.03

LSTM-TFIDF 0.2 ± 0.0 0.72 ± 0.01 0.59 ± 0.01 0.73 ± 0.0 0.55 ± 0.01

LSTM-TWIT 0.21 ± 0.01 0.66 ± 0.02 0.61 ± 0.02 0.72 ± 0.01 0.57 ± 0.02

LSTM-BERT 0.25 ± 0.01 0.73 ± 0.01 0.65 ± 0.01 0.75 ± 0.01 0.62 ± 0.01

DENSE-TFIDF 0.21 ± 0.0 0.76 ± 0.01 0.66 ± 0.01 0.72 ± 0.02 0.64 ± 0.01

DENSE-TWIT 0.19 ± 0.01 0.74 ± 0.02 0.69 ± 0.01 0.71 ± 0.0 0.67 ± 0.01

DENSE-BERT 0.24 ± 0.0 0.73 ± 0.0 0.68 ± 0.02 0.72 ± 0.0 0.66 ± 0.02

F is f1 score, FH indicates hateful class, and FA indicates abusive class. P is precision

and R is recall. The red highlight indicates best performing model and the blue highlight

indicates the TF-IDF embeddings that see the most improvement with the inclusion of

user behavior metrics.

the sparse amount of hateful samples coupled with the lack of cues or signal around

the content of our tweets and reply tweets inhibits the model from learning. This tells

us that it is not enough to feed our models more context: we need to find a better way

to define that context within our feature embeddings.

5.3 Phase 3 Results

Figure 5.1 illustrates the topic keywords from our LDA model of user timeline tweets

from a user that authored a sample hateful tweet. We see that our largest topic, with

16.1% of tweet tokens, includes terms like ‘potus’, ‘russian’, ‘nytime’, and ‘vote’,

implying that this user frequently tweets about US political issues. Another tweet

annotated as hateful listed the dominant topic’s top words as ‘film’, ‘good’, ‘award’,

‘location’, ‘series’, ‘international’; upon further inspection of the tweet and the ac-



Chapter 5. Results 23

Figure 5.1: Topic LDA Modeling of User’s Timeline from Sample Hateful Tweet

Sample hateful tweet is: “Muslims immigrants are living like they’re used to where their

from, squalor, filth and violence are all they know.” This illustrates output from the

Gensim library for LDA Topic modeling.

count, we found that the tweet was quoting a film and was mislabelled as hateful. In

this case, topic modeling highlighted the difference between hateful users and hateful

tweets by providing much needed context.

Table 5.3 illustrates phase 3 results across our evaluation metrics. We see that we

achieve our best performing model on the hateful class, CNN-BERT, by using topic

modeling features, but with only a slight improvement from our previous experiment

phases. Figure 5.2 illustrates the model architecture of this best performing model.

Notably, adding the user behavior metrics to the TF-IDF embedded models improves

performance for the CNN and DenseNet classifiers, more than in phase 2 of our exper-

iments. This tell us that the pretrained Twitter and BERT embeddings add a great deal

of semantic value and cannot be much improved upon by user behavior metrics, such

as topics from the user timeline. In contrast, TF-IDF embeddings do not offer this, and

dominant topic words compensate for that.
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Figure 5.2: Best Performing Model Architecture

CNN-BERT with User Behavior Metrics. Illustrates a multiple input model architecture

where the BERT embeddings of annotated tweets and user timeline tweets are passed

through distinct CNN models. The learned features are concatenated and passed as

input to the final fully connected layer, which maps to the output.

5.4 Hyperparameter Tuning

We take our best performing model and embedding combination, CNN-BERT with

user behavior metrics, and tune it by experimenting with dropout, number of layers,

number of filters, and learning rate. Because the CNN-BERT model converged on

average at epoch 44, we do not experiment with number of epochs. Figure 5.3 il-

lustrates the 17 rounds of tuning experiments, with runtimes ranging from 5 hours

and 20 minutes to 4 minutes (see Appendix A for machine configurations). We use

the Bayes algorithm with the adaptive Parzen-Rosenblatt estimator (facilitated by the

Comet.ML library’s optimization framework [55]), which balances exploring unknown

space with exploiting the known hyperparameter values that yield the best results. The

following values perform best of the values explored: num-filters=47, num-layers=1,
dropout=0.8877, learning-rate=0.0196. This leaves us with a single layer CNN with

many filters and with a high level of regularization.
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Figure 5.3: Hyperparameter Tuning Parallel Coorodinates Chart

This chart illustrates the parameter choices and validation f-score on the hateful class

across 17 experiments. Hyperparameter tuning was facilitated by the Comet.ML li-

brary’s optimizer and visualization tools [55].

5.5 Tuned Model Results Across Experiments

Table 5.4 and Figure 5.5 illustrate the tuned model performances. See Appendix A.1

for additional results. All the tuned models demonstrate higher f-score on the minority

class, with the tuned phase 2 reply-pairings model performing best at 0.33 ± 0.01.

This model also performs best on all classes, with an overall f-score of 0.72 ± 0.01. It

achieves the highest recall but not the highest precision of the experiments conducted

so far. We hypothesize that the tuned phase 2 reply-pairings model performs better than

the other models because the single layer CNN with many filters is overfitting with the

BERT and LDA topic embeddings as well as with the reply network coefficients. With

only the tweet and reply-pairing BERT embeddings, the network seems to have a more

generalizeable notion of context.

In order to better understand our precision and recall scores, we analyze a confusion

matrix in table 5.4. We see that the hateful class was correctly classified 40% of the
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time and was most commonly confused with the abusive class. The abusive class was

correctly classified 82% of the time, which is higher than the model’s ability to detect

normal tweets or spam tweets. In the below samples, the model predicts a tweet is

hateful when it is labeled as hateful, abusive, and normal, respectively. Personally

identifiable information is removed.

RHate when folk ask me questions that they already know the answers to .
B*TCH what you fishing for ? (Hateful Label)

That was the most patronising thing I’ve ever heard about young people
and propaganda. What about old people and the mail?! (Abusive Label)

TEACHERS too! Another “trusted” member of society, doing the nasty
with teen. (Normal Label)

There are a few problems with this. First, the tweet that is labelled as hateful does

not appear to be hate speech from the definitions explored in our background. Second,

the tweet that is labelled as normal could be considered abusive towards teachers. All

of these tweets have negative sentiment, so it does appear our model has picked up on

that. This deeper dive into the actual content that is misclassified hints at a problem

with the annotation quality of our dataset.

5.6 Results Summary

The models that used Google’s pretrained BERT embeddings performed better than

TF-IDF and Twitter pretrained embeddings across most models in our three phases

of experiments. CNN-BERT outperformed the logistic regression, MLP, LSTM, and

DenseNet models for all three phases of experiments. Before tuning, our best perform-

ing model is the CNN multiple input model architecture with tweet and LDA topic

words from user timeline tweets, all embedded with Google’s pretrained BERT em-

beddings. After tuning, our best performing model is the CNN multiple input model

architecture with tweet and reply pairings embedded using Google’s pretrained BERT

embeddings. We hypothesize that this is because the parameter choices of a single

layer, 47 filter CNN with high dropout still leads to overfitting when additional context

is added to the embeddings. This may be because the pretrained BERT embeddings

add a lot of semantic information to begin with, which is demonstrated in our results

where BERT embeddings are not much improved upon between experiment phases.
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Table 5.4: Tuned CNN-BERT Model Performance

MODEL FH FA F P R

PHASE-1 0.32 ± 0.02 0.77 ± 0.01 0.71 ± 0.01 0.76 ± 0.01 0.69 ± 0.01

PHASE-2-1 0.33 ± 0.01 0.78 ± 0.01 0.72 ± 0.01 0.76 ± 0.0 0.7 ± 0.01

PHASE-2-2 0.32 ± 0.0 0.77 ± 0.01 0.7 ± 0.01 0.76 ± 0.0 0.69 ± 0.01

PHASE-3 0.32 ± 0.01 0.78 ± 0.01 0.7 ± 0.02 0.77 ± 0.01 0.68 ± 0.02

F is f1 score, FH indicates hateful class, and FA indicates abusive class. P is precision

and R is recall.

Ultimately, we are able to improve on our logistic regression baseline performance

on the hateful class by .13 on a dataset with scarce hateful labels. If we were to ran-

domly annotate a tweet as hateful with 4% probability, we’d achieve around 4% accu-

racy on the hateful class. Thus, we interpret the f-score of .33 as relatively high.

5.7 Experiment Difficulties

Below are a few experiment difficulties.

Nondeterministic evaluation error in university cluster’s ability to load a saved
model. This bug was identified when the test metrics had a standard deviation of .3+,

which implied a bug in the metric computation, in sampling, in the experiment builder

or in the dataset. After verifying the performance of each of those sections, the bug

was isolated to the model load functionality. When the model was evaluated within

training on the test set, the metrics were normal, but when the best performing model

was loaded in using PyTorch, the abnormal metrics occurred in one or two out three

experiment seeds. After verifying all parts of the models state dictionary and parameter

weights, we guessed it was a hardware stack error, and deployed the experiment on the

Google Cloud Platform (GCP) instead of the Machine Learning Practical cluster. The

experiment ran a) significantly faster and b) with normal test metrics.

BERT embeddings. In order to expedite experiments, we do not load BERT em-

beddings from the Python library every time, because that is expensive in terms of

time and computation. Instead we collect the BERT embeddings of our tweets (includ-

ing our reply and user timeline tweets) 1,000 at a time, process the embeddings with
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trimming or padding, and store a dictionary mappings tweet ids to embeddings.

Twitter data that has been taken down. Only 64% of the tweets in the original

dataset could be recovered. For phase 2, about 16% of the instigator tweets could not be

recovered. While this signals that potentially hateful or abusive content is being taken

down rapidly (within a 9 month time window), it limits our ability to conduct research.

A recommendation is for future researchers to provide the social media content they

collect directly instead of references to it, although the retention of user data may

violate some form of General Data Protection Regulation.
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Figure 5.4: Confusion Matrix of Final Model.
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Figure 5.5: Tuned CNN-BERT Experiment Results

All the tuned models demonstrate higher f-score on the minority class, with the tuned

phase 2 model performing best at 0.33.
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Conclusion

6.1 Technical Contributions

Our final model successfully picked up on negative tweet sentiment and identified the

abusive class at the highest rate, of 82% accuracy and 0.78 f-score. The model offers

a significant improvement on detecting hate speech, as we are able to improve on our

logistic regression baseline performance on the hateful class by .13 f-score on a dataset

with scarce hateful labels. If we were to randomly annotate a tweet as hateful with 4%

probability, we’d achieve around 4% accuracy on the hateful class. Thus, we interpret

the final f-score on the hateful class of .33 as relatively high.

The models that used Google’s pretrained BERT embeddings performed better than

TF-IDF and Twitter pretrained embeddings across most models in our three phases

of experiments. CNN-BERT outperformed the logistic regression, MLP, LSTM, and

DenseNet models for all three phases of experiments. Before tuning, our best per-

forming model is the CNN multiple input model architecture with tweet and user topic

BERT embeddings. After tuning, our best performing model is the CNN multiple in-

put model architecture with tweet and reply BERT embeddings. We hypothesize that

this is because the parameter choices of a single layer, 47 filter CNN with high dropout

will overfit with BERT and a large measure of user context. The pretrained BERT
embeddings add enough semantic information to give us our most competitive
models and adding additional metrics of context through aspects of the social net-
work does not improve performance.

The task of automating the detection of hate speech on social media platforms re-

mains a challenge, in part due to the difficulty in obtaining high-quality, large-scale

annotated datasets and the scarce hateful samples available for machine learning mod-

31
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els to learn from. Our experiments reflect this and suggest that improving the quality

and consistency of annotations in our dataset is likely to result in more accurate auto-

mated systems. A promising area of future research is to use boosting methods, like

oversampling or undersampling, in order to adjust the class distribution of our dataset.

6.2 Policy Recommendations

We now outline the key takeaways for policy and decision makers. First, if the task

is completely automated it seems we risk removing posts that are abusive, normal,

or spam which would look like a form of censorship on social media platforms. In

this environment, the promotion of free speech may warrant keeping a human in the

loop and having hateful content online for longer amounts of time. When content is

published on the internet, especially controversial hate speech, it will likely be copied

very quickly. Therefore, the speed at which a social media platform takes down the

content does not guarantee that the content will not be made available elsewhere. It

may be preferable to keep the human in the loop, especially if the detection of hate

speech carries legal penalties, as is the case for certain European Union countries.

Second, topic modeling and other forms of user behavior metrics can be incorpo-

rated into a contagion tool. A contagion tool monitors trends and patterns and how

they might spread through a network or change in response to triggering events. Topic

modeling can provide helpful backgrounds on users and support the automated sys-

tem’s decision. While the inclusion of this in the feature embedding may not add

much information to the model, it can add a level of interpretability to the decision by

summarizing how coherent a user’s timeline is around a topic and the words that make

up a dominant topic. For example, we found that the author of a hate speech tweet in

our dataset had a timeline defined by the topics of US politics and Russia. With this

type of tool, researchers could track if hate speech from this user’s follower Twitter

network increases as we approach the US 2020 elections.

Third, given the massive amounts of content produced on social media platforms

daily, it is not reasonable today to expect that a company can immediately detect and

remove online hate speech. While increased scrutiny has furthered our capabilities,

a “good” automated hate speech detector may mean detecting detecting 30% of hate

speech and passing merely abusive content to human moderators.

The technical limitations described indicate that this problem will not be solved

through automation alone; policy-makers must cooperate with social media companies
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in order to guide the handling of classified hateful and abusive content. This research

is meant to inform interdisciplinary coalitions on the current landscape of hate speech

detection. Ultimately, social media has contributed to a more open and connected

world. It is critical that we mitigate the negative consequences of hate speech while

preserving the benefits of online discussion.
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Appendix A

Experiments

A.1 Code

All code can be found at https://github.com/ashemag/hate_speech_detection

A.2 Machine Configuration

We use the Google Cloud Platform and create an instances with:

• 32 vCPUs, 208 GB memory

• 2 NVIDIA Tesla P4 GPUs

• 100 GB disk of the Deep-Learning-Pytorch Image

A.3 Additional Results

40
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Figure A.1: Training vs. Validation Performances

Training f-score overall on and the hateful class is more consistent than on the vali-

dation set. This may be because our training set consists of balanced batches; even

though our model is learning from the training set its unable to consistently classify the

validation. This may be due to poor annotation quality.
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Glossary

API: application program interface; allows applications to communicate with one

another.

Convolutional layer: a mathematical operation that takes two inputs, such as an

image and a filter, and learns features by using smaller parts of the input.

Cross validation: technique that reserves a sample of a dataset that the model is

not trained on. Later, this sample is used for testing.

Crowdsourcing: the practice of obtaining information for a task by enlisting the

services of a large number of people, typically via the Internet.

Feature embedding: the input fed into a machine learning model. It can consist of

embeddings of different text features, like a tweet or topic. Embeddings are mappings

of data into numerical vectors.

Fully connected layer: layer that connects every input neuron (i.e. operation)

to outputs. We use this layer to map our learned feature representations to our final

classes (i.e. hateful, abusive, normal, spam).

General Data Protection Regulation: a regulation in EU law (put into practice in

2018) on data protection and privacy for all individual citizens of the European Union

(EU) and the European Economic Area (EEA).

43



Appendix B. Glossary 44

Ground truth labels: the reality, or labels, we want our model to predict.

Hyperparameter: a parameter whose value is set before the learning process be-

gins.

In-degree: in graph theory, this is the number of edges going into a node.

Logistic regression: a classification algorithm used to assign observations to classes.

In our case, we use multiclass logistic regression.

Natural language processing (NLP): the process of a computer extracting infor-

mation from natural language input and producing natural language output.

N-gram: a contiguous sequence of n items from a given sample of text or speech.

NumPy: package for scientific computing with Python.

Out-degree: in graph theory, this is the number of edges going out of a node.

Overfitting: model behavior where training corresponds too closely to data and

thus may fail to fit additional data.

Personally identifiable information: data that could potentially identify an indi-

vidual.

Pooling layer: combines several values into a single one. Helps the layer general-

ize because it effectively decreases the chance of overfitting.

PyTorch: a machine learning library based on the Torch library, for Python, used

for applications such as deep learning and natural language processing.

Regularization: a way of penalizing model complexity to prevent overfitting.

Softmax layer: used to map the output of a network to a probability distribution

over predicted classes. From this, we select label samples with the class with the high-
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est probability.
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Abstract
The problem of automating the detection of online hate1

speech is made more critical by the moral and legal con-2

sequences of its propagation in a social media network.3

This research surveys the current landscape of online4

hate speech detection, deep learning model architec-5

tures, embedding choices, and the inclusion of user be-6

havior metrics, in order to improve performance on de-7

tecting the hateful class in a Twitter dataset. We find that8

Google’s pretrained BERT embeddings outperform the9

inclusion of user behavior metrics across many model10

choices and that a single-layer multiple input Convolu-11

tional Neural Network with many filters performs best.12

The contribution of this paper is a range of experiments13

that inform machine learning researchers on promising14

future paths and policymakers on the capabilities and15

limitations of automated systems on the task of detect-16

ing hate speech.17

Introduction18

In recent years social media companies like Facebook, Twit-19

ter, and Alphabet Inc.’s YouTube have been widely criti-20

cized for failing to detect and remove hate speech from their21

platforms (Cave 2019). In March 2019, a white supremacist22

posted racist manifestos–which spread through Twitter–and23

live-streamed the shooting of over 51 people on Face-24

book and YouTube. While both companies leverage machine25

learning algorithms to automatically detect and remove such26

content, they failed to take down the content quickly enough.27

Facebook’s head of public policy defended the platform’s28

slow response time:29

“The video was a new type that our machine learning30

system hadn’t seen before. It was a first person shooter31

with a GoPro on his head...This is unfortunately an ad-32

versarial space. Those sharing the video were deliber-33

ately splicing and cutting it and using filters to subvert34

automation. There is still progress to be made with ma-35

chine learning (Wakefield 2019).”36

Progress needs to be made sooner rather than later. Hate-37

ful content on social media contributes to real-world vio-38

lence (Müller and Schwarz 2018), recruitment to and propa-39

ganda for terrorist individuals/groups (Awan 2017), makes40

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other users feel less safe and secure on social platforms41

(ElSherief et al. 2018), and triggers increased levels of toxi-42

city in the network (Cheng et al. 2017).43

Governments are enforcing the need to find reasonable44

solutions, fast. The Sri Lanken government temporarily45

banned social media networks three separate times in the46

wake of the Easter 2019 suicide bombings that killed hun-47

dreds of people, in order to prevent “social unrest via hate48

messages” (Marcin 2019). French leader Emmanuel Macron49

has made fighting online hate speech a priority, taking meet-50

ings with Mark Zuckerberg and other high-level Facebook51

representatives; as a result Facebook has agreed to hand over52

data on French users suspected of spewing hate speech on-53

line. This is an international first, and according to a counsel54

at law firm Linklaters, “a strong signal in terms of regula-55

tion” (Rosemain 2019). EU countries have threatened to fine56

social networks up to 50 million euro per year if they con-57

tinue to fail to act faster (Thomasson 2017).58

Social media has contributed to a more open and con-59

nected world (Rainie, Anderson, and Albright 2017). It60

has promoted Western liberal values through its effects on61

protest mobilization (Breuer, Landman, and Farquhar 2015),62

community building (Jackson, Bailey, and Foucault Welles63

2018), and accountability in governments and institutions64

(Enikolopov, Petrova, and Sonin 2018). It is critical that we65

do not lose the benefits of these platforms as they operate un-66

der increased regulation and scrutiny. So, while automated67

systems can and should enforce uniform policies for user68

behavior that fosters welcoming online environments, this69

should not come at the cost of dissenting and fringe views.70

This paper aims to navigate the challenge of creating sys-71

tems that distinguish hateful content from abusive, normal,72

and spam content. We echo the concerns of Facebook’s head73

of public policy by asking:74

How can we improve the performance of automated75

systems on identifying hate speech when they must learn76

from few hateful samples?77

This research surveys the capabilities and limitations of78

state-of-the-art (SOTA) deep learning model architectures79

with an emphasis on comparing the inclusion of user behav-80

ior features to using advanced pretrained word embeddings.81

We begin by describing related research and the model ar-82

chitectures which have shaped the current landscape of au-83

tomated hate speech detection. We explain how this research84



informs our methodology and go on to describe our data,85

how it is collected and processed, the details of our model86

architectures, and metrics for evaluation.87

We find that Google’s pretrained BERT embeddings add88

enough semantic information to our model that the inclusion89

of user behavior metrics does not offer further improve per-90

formance.91

Related Work92

Using Deep Learning Approaches93

In spite of the growing phenomenon of hate speech, prior to94

2016, NLP research on hate speech was limited (ElSherief95

et al. 2018) (Waseem and Hovy 2016). Since then, statisti-96

cal machine learning techniques like logistic regression and97

naive Bayes classifiers have been applied to this area with98

success; logistic regression in particular is widely consid-99

ered a baseline model for experiments today (Waseem and100

Hovy 2016) (Badjatiya et al. 2017) (Schmidt and Wiegand101

2017). Recently, the aforementioned pressures, coupled with102

concurrent advances in NLP and deep learning, has sparked103

a resurgence in interest in the field. The success of deep neu-104

ral networks on NLP tasks like sentiment analysis (Tang et105

al. 2014), named entity recognition (Habibi et al. 2017), and106

part-of-speech tagging (Santos and Zadrozny 2014) have107

made it a natural choice to apply to the task of classifying108

tweets or posts as hateful.109

The baseline machine learning model choice, which tends110

to perform well, is logistic regression (Davidson et al. 2017)111

(Xiang et al. 2012). Another baseline model, support vec-112

tor machines (SVMs)–with linear kernels–perform similarly113

to logistic regression in practice (Del Vignal et al. 2017).114

Linear models tend not to capture the sparse features in doc-115

ument classification tasks, undermining the detection of re-116

lations between words or symbols in sentences. CNNs and117

RNNs (particularly LSTMs) have achieved SOTA perfor-118

mance due to their ability to capture long-term dependencies119

in a sentence, tweet, or post through their ability to maintain120

information in memory for a period of time (Badjatiya et al.121

2017) (Pitsilis, Ramampiaro, and Langseth 2018).122

The Difficulty with Hate Speech Datasets123

A connected area of research is the task of creating robust124

hate speech datasets. The common practice is to deploy a125

collection of tweets or posts to a crowdsourcing site, where126

a number of human annotators identify an appropriate clas-127

sification (i.e. hateful, normal, abusive, spam). This is prob-128

lematic for a few reasons and highlights the ways in which129

human-annotated data reflects social biases. First, the sub-130

jective nature of identifying hate speech makes it difficult131

to extract ground truth labels for tweets or posts (Founta et132

al. 2018). There are many definitions of hate speech, which133

vary across different languages, cultures, and governments.134

Many of the definitions involve the hateful targeting of mem-135

bers of a group, like this one:136

“Language used to express hatred towards a targeted137

individual or group, or is intended to be derogatory, to138

humiliate, or to insult the members of the group, on the139

basis of attributes such as race, religion, ethnic origin,140

sexual orientation, disability, or gender.” (Davidson et141

al. 2017)142

Second, because there is no universally agreed upon def-143

inition of hate speech [18], it is often difficult for human144

annotators to separate hate speech from offensive language.145

Given the legal consequences of hate speech, it is important146

that annotators and machine learning classifiers distinguish147

between hateful language and offensive language (Founta et148

al. 2018) (Davidson et al. 2017). It has been found that show-149

ing users a definition of hate speech does not improve anno-150

tation reliability, hinting that the presence of hate speech is151

not a binary decision and annotators likely need more con-152

text (Schmidt and Wiegand 2017), such as sample post-label153

pairings.154

Third, it is likely that annotators skim through tweets or155

posts too quickly and fail to pick up on the context of the156

language. Past research demonstrates that annotators will in-157

correctly label normal text as hate speech if it contains hate158

or curse words (Davidson et al. 2017). Annotators are likely159

to miss out on hate speech without a slur as well as inter-160

pret racist and homophobic slurs as hateful but sexist slurs161

as ‘just offensive’ (Waseem and Hovy 2016) (Davidson et162

al. 2017).163

The Inclusion Of User Behavior Metrics164

Hateful users tend to make themselves central to the Twit-165

ter social network: they target more popular and popular166

users and they have more statuses and followees per day,167

although they have younger accounts (ElSherief et al. 2018)168

(Ribeiro et al. 2017). While this may increase the user’s vis-169

ibility, the inclusion of hateful or antagonistic content in a170

tweet reduces the rate of retweet by a factor of 45 (Burnap171

and Williams 2015). Despite this, hateful users are central172

to Twitter reply networks as determined by features such as173

betweenness and eigenvector centrality (Ribeiro et al. 2017).174

Furthermore, the modeling of reply trees–rooted at a tweet175

and joined by replies–reveals that the in-degree of the tweet,176

or the number of retweets, plays an important role in the177

overall shape of the reply tree and a component of the Twit-178

ter reply network as a whole (Nishi et al. 2016).179

Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan180

2003) is a method of topic modeling that extracts the main181

topics in text. It has been used to improve the performance182

of linear machine learning classifiers on the task of identi-183

fying abusive social media content (Xu et al. 2012). While184

LDA-derived topics have been used as annotations (Wiede-185

mann et al. 2018), to the best of our knowledge it has not186

been included in feature embeddings in order to improve the187

performance of deep learning classifiers on the task.188

Methodology189

The overall goal of this research is to conduct a survey of190

deep learning model architectures, embedding choices, and191

feature inputs in order to automate the identification of hate-192

ful tweets from a dataset with few hateful samples. Unlike193

previous work, we experiment with user behavior metrics194

in multiple input model architectures to provide our deep195



Figure 1: Word clouds of tweets from the hateful, abusive,
normal, and spam classes.

learning classifiers with more context to identify hate speech196

with.197

Dataset198

The dataset for this research comes from Founta et al.’s work199

that describes the process of large scale crowdsourcing for200

annotations of hateful, normal, abusive, and spam tweets201

(Founta et al. 2018). Founta et al. provide status ids for oth-202

ers to obtain tweets through the Twitter API. After learning203

that a number of tweets were no longer available on Twitter,204

they provided 100k tweets’ status ids and their associated205

majority labels. Upon using the Twitter API, we find that206

only 64% of those tweets are still available online; we as-207

sume the remainder have been taken down by Twitter or the208

users. The class distribution is as follows: 4% hateful, 20%209

abusive, 62% normal, and 14% spam; there are 64,149210

tweets total. Half the tweets achieved annotation majority211

with an agreement of more than 3 out of 5 votes, which212

should give us some confidence in the annotations. Figure213

1 illustrates a word cloud of each class.214

The average retweet count of hateful content is 15%215

higher than the average retweet count of normal content; the216

average favorite count of hateful content is 76% higher than217

the average favorite count of normal content. Finally, on av-218

erage hateful content is a reply to existing tweets 31% more219

often than normal content is.220

For each tweet, if it is in reply to a tweet we use Twitter’s221

API to collect the context tweet. 19% of the total tweets are222

a reply. Of those, 14% are no longer available on Twitter.223

For each tweet, we crawl the user timeline of the author and224

collect their 200 most recent tweets, giving us around 12.8225

million additional tweets for LDA topic modeling.226

Data Processing227

We clean the tweets by tokenizing, lowercasing, and remov-228

ing punctuation. We keep URLs because they provide im-229

portant context; tweets with URLs are more likely to get230

retweeted (Suh et al. 2010). We experiment with three types231

of text embeddings:232

1. Term Frequency-Inverse Document Frequency (TF-233

IDF) embeddings. TF-IDF fits the training set into a234

weighted vector by normalized frequency of the 10,000235

most common words in our vocabulary. Our validation236

and test set are transformed using the learned weights.237

2. Pretrained Twitter embeddings. These embeddings are238

from a Word2Vec model trained on 400 million raw En-239

glish tweets, with an embedding dimension of 400 (Godin240

et al. 2015).241

3. Pretrained BERT embeddings. Google’s BERT, or242

Bidirectional Encoder Representations from Transforms,243

is a novel method of pre-training language representations244

which obtains SOTA results on a range of NLP tasks de-245

vlin2018BERT. Specifically, we use the BERT-12-768-12246

model with an embedding dimension of 768.247

For our word embeddings, we trim or pad each tweet to248

17 words, the average size of a tweet in our dataset. When249

padding, we add randomly generated embeddings so that250

each tweet embedding is a n-gram, where n=17. To account251

for the imbalance of classes in our dataset, for our training252

experiments we draw samples through a multinomial dis-253

tribution that accounts for each class weight. Our balanced254

batches allow the classifier to learn class representations255

more consistently each epoch. We do not do this for valida-256

tion and testing because a) we run the risk of tweet samples257

that are seen multiple times or never in our evaluation and b)258

it is not a realistic representation of tweets in the wild.259

Model Architectures260

Logistic Regression Our baseline model is multi-class lo-261

gistic regression which uses the L2 norm penalty as a form262

of regularization.263

Multilayer Perceptron. Known as a “vanilla neural net-264

work”, this model consists of fully connected layers with265

the non-linear activation function leaky ReLu applied. We266

use Leaky ReLus here and in other models because it allows267

a small, positive gradient when the unit is not active and as a268

result, tends to perform better than nonleaky ReLu in prac-269

tice.270

Convolutional Neural Network (CNN). While this271

model is traditionally used for image inputs, it has per-272

formed well on NLP tasks and has had success when ap-273

plied to hate speech detection (Gambäck and Sikdar 2017).274

The convolutional layer computes the output of neurons (i.e.275

mathematical operations) that are connected to local regions276

in the input. It consists of a set of learnable filters that pro-277

duce an activation map used to ultimately compute the class278

scores. Our CNN consists of a series of convolutional layers,279

batch normalization, leaky ReLu, and dropout. The output is280

processed through a max-pooling layer and then a fully con-281

nected layer which computes class probabilities. Our CNN282

contains a context list that gives every layer access to all the283

previous layers, allowing for more connectivity and greater284

chance of the network learning from long-term dependen-285

cies in the tweet.286

DenseNet. CNNs are more accurate and efficient if they287

contain shorter connections between layers close to the in-288

put and output (Huang et al. 2017). DenseNet leverages this289



observation by connecting every layer to every other layer:290

for each layer, the feature maps of all preceding layers are291

used as inputs into all subsequent layers. Our DenseNet im-292

plementation has achieved SOTA results for image datasets;293

we experiment with its application to NLP.294

LSTM. LSTMs (and RNNs more broadly) improve on295

traditional deep neural networks by propagating informa-296

tion in both directions. This loop in the architecture acts as297

a memory state by which the network makes adjustments in298

the information flow, allowing the model to selectively re-299

member or forget. This model has performed well on NLP300

tasks in practice because of its ability to remember depen-301

dencies and between sentences; it is applied to the task of302

hate speech detection by (Badjatiya et al. 2017) (Del Vignal303

et al. 2017) (Gambäck and Sikdar 2017). Our implementa-304

tion passes our input through a series of LSTM layers to a305

final fully connected layer.306

Experiment307

Phase 1: Tweet Embedding308

We compare our deep learning models to a baseline logistic309

regression model to begin with an idea around how much of310

an improvement they can offer. Here the feature embedding311

to our deep learning models are simply the tweet embed-312

dings. Table 1 enumerates regularization choices, number313

of layers, and model-specific hyperparameter values. Reg-314

ularization reduces the number of parameters and amount of315

computation in the network, which helps to control overfit-316

ting.317

Phase 2: Tweet + Reply Embeddings318

The goal of this round of experiments is to apply some type319

of context to our embeddings. First, because of the statistics320

collected around the behavior of hateful users and retweet-321

ing, we define pairs of tweets: the original tweet and a con-322

text tweet. The context tweet is for the case that the tweet323

was a response to something else. If the tweet is not a re-324

sponse to something else, we add null embeddings to indi-325

cate that there is no context for the tweet. Although only326

19% of our tweets in the dataset are replies, the extra infor-327

mation around context (when it is there and not there) may328

help our network learn in some way.329

Next, because tweet in-degree has been shown to be sig-330

nificant ((Nishi et al. 2016), see Background) we focus331

on in-degree in terms of number of times someone has332

retweeted a given tweet and number of times someone has333

favorited a given tweet. Our maximum retweet value is334

154,565 and our maximum favorite value is 27,741. Be-335

cause these numbers are so large, we log each (and use 0336

when the count is 0), so as to not skew the learned weights.337

We concatenate the logged retweet and favorite counts to338

our tweet and reply embeddings. We are interested to see if339

the network can better learn from the retweet and favorite340

numbers as a global measure of context.341

Here and for the remaining experiments, we shift to build-342

ing a neural network with multiple inputs in order to have the343

network learn from the annotated tweet in addition to other344

Figure 2: Multiple Input CNN Architecture

types of embeddings. We have the annotated tweet embed-345

ding and the context tweet embedding as separate inputs;346

they are processed by different parts of the model architec-347

ture. The learned features for each are concatenated and fed348

into a final fully connected layer. See Figure 2 for a visual-349

ization of a multiple input network architecture.350

Phase 3: Tweet + Dominant Topic Embeddings351

This phase aims to add context in a more sophisticated way.352

For each tweet in our dataset, we crawl the author’s user353

timeline and collect 200 tweets. We then conduct topic mod-354

eling through the LDA approach (discussed in Background).355

For each of our users, we find the dominant topic in their356

timeline tweets and create embeddings of a sequence of the357

top 10 words related to the topic. We choose the same em-358

bedding that is used to embed our tweets for a given ex-359

periment. We also concatenate the coherence and perplexity360

scores of the user’s timeline to each embedded topic word in361

order to add a global measure of topic modeling. Perplexity362

is a measure of how well a probability model can predict a363

topic (lower is better) and coherence captures how well top-364

ics can be defined (higher is better).365

Our multiple input model architecture processes the topic366

embeddings and tweet embeddings. Again, we concatenate367

the learned features and use this as input to the final fully368

connected layer.369

Hyperparameter Tuning & Evaluation370

We tune our best performing models–by model type and em-371

bedding type–by experimenting with learning rate, regular-372

ization, number of layers, and the model specific parame-373

ter. We define best performing model as the model with the374

greatest validation f-score on the hateful classes. We evalu-375

ate our results by overall metrics of f-score, precision, and376

recall as well as f-score of the hateful and abusive classes.377

This is because we are concerned with our classifier’s ability378

to correctly identify hateful and abusive samples. To achieve379

stability in the results, we evaluate the mean and standard380

deviation of 3 experiments each.381



MODEL REGULARIZATION LAYERS
LR L2-NORM PENALTY -
MLP MP, λ=1E-4 3 FC-LERELU-FC
CNN MP, BN, δ=0.5, λ=1E-4 3 CONV-BN-LERELU-FC
DENSENET AP, BBN, δ=0.5, λ=1E-4 4 DENSE-BBN-RELU-CONV-FC
LSTM δ=0.5, λ=1E-4 3 LSTM-FC

Table 1: Baseline model architectures. Terms include Weight decay (λ), Max Pooling (MP), Average Pooling (AP), Dropout (δ),
Batch Normalization (BN), and Bottleneck Layer, which includes BN (BBN). Model-specific hyperparameters include CNN
filters=8, DENSENET growth-rate=12, LSTM hidden-layers=5.

Limitations382

We acknowledge that there are alternative experiment design383

choices within our methodology that are worth exploring in384

future work. First, we choose to trim or pad tweets instead385

of processing tweets in batch sizes by tweet length or by ap-386

plying a pooling layer. Second, we do not experiment with387

character embeddings. Third, we are limited by the data re-388

turned by Twitter’s publicly available API. The reply tree389

study conducted by (Nishi et al. 2016) in 2016 is no longer390

easily replicable, as Twitter only provides a subset of data.391

For example, when trying to collect replies from a tweet with392

78 replies, only 15 were available through the API. Accord-393

ing to Twitter: Please note that Twitter’s search service and,394

by extension, the Search API is not meant to be an exhaus-395

tive source of Tweets. Not all Tweets will be indexed or made396

available via the search interface.397

Results398

Phase 1 Results399

Table 2 illustrates Phase 1 results across our evaluation met-400

rics. Randomly classifying a sample as hate speech with the401

distribution found in our dataset results in 4% classifica-402

tion accuracy. Relative to this, logistic regression is a strong403

baseline with 0.20 f-score on the hateful class. This is in404

line with the results from (Gambäck and Sikdar 2017). The405

BERT embeddings perform the best across all models, with406

CNN-BERT being the best performing combination for both407

f-score on the hateful class (0.29) and f-score overall (0.71).408

The MLP does not perform well; we hypothesize that this is409

because of the scarcity of hateful tweets in addition to the410

fact that our feature embeddings only consist of tweet em-411

bedddings. As a result, the MLP and LSTM models do not412

have enough signals or cues to interpret the input. In con-413

trast, we hypothesize that the CNN and DenseNet models414

perform well because, similar to how they handle images,415

they are interpreting patterns from an otherwise noisy input.416

Phase 2 Results417

Table 3 illustrates Phase 2 results across our evaluation met-418

rics. While different model-embedding combinations see419

different performance boosts/losses from this round of ex-420

periments, we achieve our highest score with the CNN-421

BERT with network metrics as embedding coefficients, but422

only by a slight margin. We see the most benefit to TF-423

IDF embeddings for CNN and DenseNet, where the over-424

all f-score is improved with both types of reply metrics. For425

pretrained Twitter and BERT embeddings, using reply met-426

rics as embedding coefficients by passing the context tweets427

through a tweet-level version of our model did not help the428

final model in learning. MLP and LSTM were likely not af-429

fected much because similar to our hypothesis from phase 1,430

the sparse amount of hateful samples coupled with the lack431

of cues or signal around the content of our tweets and reply432

tweets inhibits the model from learning. This tells us that it433

is not enough to feed our models more context: we need to434

find a better way to define that context within our feature435

embeddings.436

Phase 3 Results437

Figure 3 illustrates the topic keywords from our LDA model438

of user timeline tweets from a user that authored a sam-439

ple hateful tweet. We see that our largest topic, with 16.1%440

of tweet tokens, includes terms like ‘potus’, ‘russian’, ‘ny-441

time’, and ‘vote’, implying that this user frequently tweets442

about US political issues. Another tweet annotated as hate-443

ful listed the dominant topic’s top words as ‘film’, ‘good’,444

‘award’, ‘location’, ‘series’, ‘international’; upon further in-445

spection of the tweet and the account, we found that the446

tweet was quoting a film and was mislabelled as hateful. In447

this case, topic modeling highlighted the difference between448

hateful users and hateful tweets by providing much needed449

context.450

Table 4 illustrates phase 3 results across our evaluation451

metrics. We see that we achieve our best performing model452

on the hateful class, CNN-BERT, by using topic modeling453

features, but with only a slight improvement from our pre-454

vious experiment phases. Figure 2 illustrates this multiple455

input model architecture. Notably, adding the user behavior456

metrics to the TF-IDF embedded models improves perfor-457

mance for the CNN and DenseNet classifiers, more than in458

phase 2 of our experiments. This tell us that the pretrained459

Twitter and BERT embeddings add a great deal of semantic460

value and cannot be much improved upon by user behavior461

metrics, such as topics from the user timeline. In contrast,462

TF-IDF embeddings do not offer this, and dominant topic463

words compensate for that.464

Hyperparameter Tuning465

We take our best performing model and embedding com-466

bination, CNN-BERT with user behavior metrics, and tune467

it by experimenting with dropout, number of layers, num-468

ber of filters, and learning rate. Because the CNN-BERT469



MODEL FH FA F P R

LR-TFIDF 0.13 ± 0.05 0.28 ± 0.12 0.52 ± 0.05 0.53 ± 0.07 0.57 ± 0.06
LR-TWIT 0.15 ± 0.01 0.63 ± 0.0 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.01
LR-BERT 0.2 ± 0.0 0.74 ± 0.0 0.71 ± 0.0 0.71 ± 0.0 0.72 ± 0.0

MLP-TFIDF 0.0 ± 0.0 0.22 ± 0.16 0.05 ± 0.02 0.03 ± 0.01 0.18 ± 0.03
MLP-TWIT 0.08 ± 0.04 0.42 ± 0.01 0.32 ± 0.13 0.57 ± 0.03 0.32 ± 0.07
MLP-BERT 0.05 ± 0.04 0.24 ± 0.16 0.19 ± 0.18 0.33 ± 0.22 0.23 ± 0.16

CNN-TFIDF 0.1 ± 0.01 0.22 ± 0.09 0.38 ± 0.06 0.49 ± 0.06 0.33 ± 0.06
CNN-TWIT 0.27 ± 0.04 0.78 ± 0.02 0.68 ± 0.01 0.75 ± 0.01 0.65 ± 0.01
CNN-BERT 0.29 ± 0.03 0.75 ± 0.02 0.71 ± 0.03 0.76 ± 0.02 0.69 ± 0.03

LSTM-TFIDF 0.18 ± 0.01 0.62 ± 0.06 0.52 ± 0.03 0.67 ± 0.02 0.49 ± 0.03
LSTM-TWIT 0.22 ± 0.01 0.67 ± 0.02 0.62 ± 0.02 0.72 ± 0.01 0.58 ± 0.02
LSTM-BERT 0.25 ± 0.02 0.74 ± 0.01 0.67 ± 0.01 0.76 ± 0.0 0.64 ± 0.01

DENSE-TFIDF 0.08 ± 0.0 0.14 ± 0.1 0.27 ± 0.19 0.29 ± 0.21 0.26 ± 0.15
DENSE-TWIT 0.22 ± 0.01 0.74 ± 0.01 0.67 ± 0.01 0.7 ± 0.0 0.66 ± 0.01
DENSE-BERT 0.26 ± 0.01 0.73 ± 0.0 0.68 ± 0.01 0.72 ± 0.0 0.67 ± 0.01

Table 2: Phase 1 Experiment Results, Tweet Embeddings. F is f1 score, FH indicates hateful class, and FA indicates abusive
class. P is precision and R is recall. The red highlight indicates best performing model and the blue highlight indicates the
TF-IDF embeddings that see the most improvement with the inclusion of user behavior metrics.

MODEL FH FA F P R

MLP-TFIDF 0.06 ± 0.04 0.11 ± 0.16 0.03 ± 0.03 0.02 ± 0.02 0.1 ± 0.07
MLP-TWIT 0.12 ± 0.01 0.36 ± 0.06 0.26 ± 0.14 0.44 ± 0.2 0.28 ± 0.09
MLP-BERT 0.07 ± 0.02 0.38 ± 0.01 0.4 ± 0.0 0.52 ± 0.02 0.38 ± 0.02

CNN-TFIDF 0.06 ± 0.04 0.23 ± 0.08 0.26 ± 0.14 0.38 ± 0.1 0.28 ± 0.05
CNN-TWIT 0.25 ± 0.01 0.77 ± 0.03 0.66 ± 0.03 0.75 ± 0.01 0.64 ± 0.03
CNN-BERT 0.29 ± 0.01 0.76 ± 0.02 0.7 ± 0.02 0.75 ± 0.01 0.68 ± 0.01

LSTM-TFIDF 0.19 ± 0.0 0.69 ± 0.0 0.56 ± 0.0 0.7 ± 0.0 0.53 ± 0.0
LSTM-TWIT 0.13 ± 0.0 0.41 ± 0.0 0.5 ± 0.0 0.61 ± 0.0 0.46 ± 0.0
LSTM-BERT 0.22 ± 0.0 0.7 ± 0.0 0.65 ± 0.0 0.74 ± 0.0 0.61 ± 0.0

DENSE-TFIDF 0.11 ± 0.01 0.3 ± 0.16 0.48 ± 0.07 0.5 ± 0.06 0.48 ± 0.07
DENSE-TWIT 0.09 ± 0.01 0.31 ± 0.07 0.46 ± 0.03 0.55 ± 0.02 0.43 ± 0.04
DENSE-BERT 0.19 ± 0.01 0.69 ± 0.03 0.64 ± 0.02 0.7 ± 0.0 0.62 ± 0.02

MLP-TFIDF 0.0 ± 0.0 0.22 ± 0.16 0.2 ± 0.19 0.15 ± 0.16 0.34 ± 0.19
MLP-TWIT 0.06 ± 0.02 0.37 ± 0.02 0.14 ± 0.02 0.38 ± 0.21 0.23 ± 0.01
MLP-BERT 0.05 ± 0.0 0.35 ± 0.01 0.13 ± 0.03 0.29 ± 0.23 0.21 ± 0.02

CNN-TFIDF 0.1 ± 0.01 0.25 ± 0.07 0.41 ± 0.08 0.5 ± 0.05 0.39 ± 0.12
CNN-TWIT 0.26 ± 0.03 0.77 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.63 ± 0.01
CNN-BERT 0.3 ± 0.01 0.76 ± 0.0 0.69 ± 0.01 0.76 ± 0.0 0.67 ± 0.01

LSTM-TFIDF 0.17 ± 0.01 0.64 ± 0.04 0.52 ± 0.03 0.67 ± 0.02 0.49 ± 0.03
LSTM-TWIT 0.21 ± 0.01 0.65 ± 0.04 0.6 ± 0.03 0.71 ± 0.02 0.56 ± 0.02
LSTM-BERT 0.25 ± 0.0 0.73 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.63 ± 0.01

DENSE-TFIDF 0.07 ± 0.02 0.29 ± 0.05 0.49 ± 0.06 0.53 ± 0.07 0.5 ± 0.1
DENSE-TWIT 0.22 ± 0.02 0.75 ± 0.01 0.67 ± 0.0 0.71 ± 0.02 0.65 ± 0.0
DENSE-BERT 0.25 ± 0.0 0.73 ± 0.01 0.68 ± 0.0 0.71 ± 0.0 0.67 ± 0.01

Table 3: Phase 2 Experiment Results, Tweet + Reply (Top) & Network Metrics (Bottom) Embeddings. F is f1 score,
FH indicates hateful class, and FA indicates abusive class. P is precision and R is recall. The red highlight indicates best
performing model and the blue highlight indicates the TF-IDF embeddings that see the most improvement with the inclusion
of user behavior metrics.



MODEL FH FA F P R

MLP-TFIDF 0.14 ± 0.02 0.47 ± 0.02 0.39 ± 0.04 0.58 ± 0.01 0.39 ± 0.03
MLP-TWIT 0.08 ± 0.04 0.36 ± 0.1 0.31 ± 0.16 0.41 ± 0.24 0.32 ± 0.11
MLP-BERT 0.06 ± 0.01 0.39 ± 0.02 0.35 ± 0.09 0.53 ± 0.03 0.34 ± 0.07

CNN-TFIDF 0.24 ± 0.01 0.82 ± 0.01 0.64 ± 0.02 0.77 ± 0.01 0.61 ± 0.02
CNN-TWIT 0.19 ± 0.07 0.71 ± 0.08 0.62 ± 0.06 0.71 ± 0.04 0.61 ± 0.05
CNN-BERT 0.3 ± 0.02 0.76 ± 0.01 0.68 ± 0.03 0.76 ± 0.01 0.65 ± 0.03

LSTM-TFIDF 0.2 ± 0.0 0.72 ± 0.01 0.59 ± 0.01 0.73 ± 0.0 0.55 ± 0.01
LSTM-TWIT 0.21 ± 0.01 0.66 ± 0.02 0.61 ± 0.02 0.72 ± 0.01 0.57 ± 0.02
LSTM-BERT 0.25 ± 0.01 0.73 ± 0.01 0.65 ± 0.01 0.75 ± 0.01 0.62 ± 0.01

DENSE-TFIDF 0.21 ± 0.0 0.76 ± 0.01 0.66 ± 0.01 0.72 ± 0.02 0.64 ± 0.01
DENSE-TWIT 0.19 ± 0.01 0.74 ± 0.02 0.69 ± 0.01 0.71 ± 0.0 0.67 ± 0.01
DENSE-BERT 0.24 ± 0.0 0.73 ± 0.0 0.68 ± 0.02 0.72 ± 0.0 0.66 ± 0.02

Table 4: Phase 3 Experiment Results, Tweet + User Topic Embeddings. F is f1 score, FH indicates hateful class, and FA

indicates abusive class. P is precision and R is recall. The red highlight indicates best performing model and the blue highlight
indicates the TF-IDF embeddings that see the most improvement with the inclusion of user behavior metrics.

Figure 3: Topic LDA Modeling of User’s Timeline from Sample Hateful Tweet. Sample hateful tweet is: “Muslims immi-
grants are living like they’re used to where their from, squalor, filth and violence are all they know.” This illustrates output from
the Gensim library for LDA Topic modeling.



Figure 4: Hyperparameter Tuning Parallel Coorodinates
Chart. This chart illustrates the parameter choices and vali-
dation f-score on the hateful class across 17 experiments.

model converged on average at epoch 44, we do not ex-470

periment with number of epochs. Figure 4 illustrates the 17471

rounds of tuning experiments, with runtimes ranging from472

5 hours and 20 minutes to 4 minutes (see Appendix X for473

machine configurations). We use the Bayes algorithm with474

the adaptive Parzen-Rosenblatt estimator (facilitated by the475

Comet.ML library’s optimization framework (Comet.ml )),476

which balances exploring unknown space with exploiting477

the known hyperparameter values that yield the best re-478

sults. The following values perform best of the values ex-479

plored: num-filters=47, num-layers=1, dropout=0.8877,480

learning-rate=0.0196. This leaves us with a single layer481

CNN with many filters and with a large regularization value482

for dropout.483

Tuned Model Results Across Experiments484

Table and Figure 5 illustrate the tuned model performances.485

All the tuned models demonstrate higher f-score on the mi-486

nority class, with the tuned phase 2 reply-pairings model487

performing best at 0.33 ± 0.01. This model also performs488

best on all classes, with an overall f-score of 0.72 ± 0.01.489

It achieves the highest recall but not the highest precision of490

the experiments conducted so far. We hypothesize that the491

tuned phase 2 reply-pairings model performs better than the492

other models because the single layer CNN with many fil-493

ters is overfitting with the tweet and topic embeddings. With494

only the tweet and reply-pairing BERT embeddings, the net-495

work seems to have a more generalizeable notion of context.496

In order to better understand our precision and recall497

scores, we analyze a confusion matrix in table 6. We see that498

the hateful class was correctly classified 40% of the time499

and was most commonly confused with the abusive class.500

The abusive class was correctly classified 82% of the time,501

which is higher than the model’s ability to detect normal502

tweets or spam tweets. In the below samples, the model pre-503

dicts a tweet is hateful when it is labeled as hateful, abusive,504

and normal, respectively. Personally identifiable information505

is removed.506

Figure 5: Tuned CNN-BERT Experiment Results. All the
tuned models demonstrate higher f-score on the minority
class, with the tuned phase 2 model performing best at 0.33.

Figure 6: Confusion Matrix of Final Model. The model
can detect the abusive class most accurately.

RHate when folk ask me questions that they already know507

the answers to . B*TCH what you fishing for ? (Hateful508

Label)509

510

That was the most patronising thing I’ve ever heard about511

young people and propaganda. What about old people and512

the mail?! (Abusive Label)513

514

TEACHERS too! Another “trusted” member of society,515

doing the nasty with teen. (Normal Label)516

517

There are a few problems with this. First, the tweet that is518

labelled as hateful does not appear to be hate speech from the519

definitions explored in our background. Second, the tweet520

that is labelled as normal could be considered abusive to-521

wards teachers. All of these tweets have negative sentiment,522

so it does appear our model has picked up on that. This523

deeper dive into the actual content that is misclassified hints524

at a problem with the annotation quality of our dataset.525



MODEL FH FA F P R

PHASE-1 0.32 ± 0.02 0.77 ± 0.01 0.71 ± 0.01 0.76 ± 0.01 0.69 ± 0.01
PHASE-2-1 0.33 ± 0.01 0.78 ± 0.01 0.72 ± 0.01 0.76 ± 0.0 0.7 ± 0.01
PHASE-2-2 0.32 ± 0.0 0.77 ± 0.01 0.7 ± 0.01 0.76 ± 0.0 0.69 ± 0.01

PHASE-3 0.32 ± 0.01 0.78 ± 0.01 0.7 ± 0.02 0.77 ± 0.01 0.68 ± 0.02

Table 5: Tuned CNN-BERT Model Performance. F is f1 score, FH indicates hateful class, and FA indicates abusive class. P
is precision and R is recall.

Conclusion526

Our final model successfully picked up on negative tweet527

sentiment and identified the abusive class at the highest528

rate, of 82% accuracy and 0.78 f-score. The models that529

used Google’s pretrained BERT embeddings performed bet-530

ter than TF-IDF and Twitter pretrained embeddings across531

most models in our three phases of experiments. CNN-532

BERT outperformed the logistic regression, MLP, LSTM,533

and DenseNet models for all three phases of experiments.534

Before tuning, our best performing model is the CNN multi-535

ple input model architecture with tweet and user topic BERT536

embeddings. After tuning, our best performing model is the537

CNN multiple input model architecture with tweet and reply538

BERT embeddings. We hypothesize that this is because the539

parameter choices of a single layer, 47 filter CNN with high540

dropout will overfit with BERT and a large measure of user541

context. The pretrained BERT embeddings add enough se-542

mantic information to give us our most competitive models543

and adding additional metrics of context through aspects of544

the social network actually hurts performance.545

The task of automating the detection of hate speech on546

social media platforms remains a challenge, in part due to547

the difficulty in obtaining high-quality, large-scale annotated548

datasets and the scarce hateful samples available for ma-549

chine learning models to learn from. Our experiments reflect550

this and suggest that improving the quality and consistency551

of annotations in our dataset is likely to result in more accu-552

rate automated systems.553

Even so, our final model offers a significant improvement554

on detecting hate speech, as we are able to improve on our555

logistic regression baseline performance on the hateful class556

by .13 f-score on a dataset with scarce hateful labels. If we557

were to randomly annotate a tweet as hateful with 4% proba-558

bility, we’d achieve around 4% accuracy on the hateful class.559

Thus, we interpret the final f-score on the hateful class of .33560

as relatively high.561

The benefits of using BERT in our experiments suggest562

that further work on pretrained embeddings, from larger or563

more targeted datasets, holds more promise than adding in-564

formation specific to the social media platform. However,565

LDA topic modeling is a useful tool for gauging the quality566

of the dataset annotations, as it allowed us to quickly see a567

hateful tweet was mislabeled by clarifying that the user is a568

film reviewer. Policy and decision-makers may benefit from569

using topic modeling and other forms of user behavior met-570

rics in a contagion tool, i.e. a tool that monitors trends and571

patterns of hate speech and how they might spread through572

a network or change in response to triggering events.573

This research hopes to inform interdisciplinary coalitions574

on the current landscape of hate speech detection. While our575

model’s were able to classify abusive text with a high ac-576

curacy, they struggled with the task of distinguishing hate577

speech from normal and abusive content. A “good” auto-578

mated hate speech detector may mean detecting detecting579

30% of hate speech and passing merely abusive content to580

human moderators. The technical limitations described in-581

dicate that policy-makers must cooperate with social media582

companies in order to guide the handling of classified hate-583

ful and abusive content. Ultimately, social media has con-584

tributed to a more open and connected world. It is critical585

that we mitigate the negative consequences of hate speech586

while preserving the benefits of online discussion.587
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